Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (02): 368-372.doi: 10.3724/SP.J.1006.2013.00368

• RESEARCH NOTES • Previous Articles     Next Articles

Overexpression of BvGLP1 in Transgenic Wheat Enhances Resistance to Common Root Rot

DANG Liang1,2,**,SU Zhen-Qi3,**,YE Xing-Guo2,XU Hui-Jun2,LI Zhao2,SHAO Yan-Jun1,*,ZHANG Zeng-Yan2,*   

  1. 1 College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China; 2 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Institute of Grain and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050035, China
  • Received:2012-07-16 Revised:2012-10-09 Online:2013-02-12 Published:2012-12-11
  • Contact: 张增艳, E-mail: zhangzy@mail.caas.net.cn, Tel: 010-82108781 **同等贡献(Contributed equally to the work)

Abstract:

BvGLP1 is a kind of germin-like protein (GLP) from sugar beet. GLP catalyzes the oxidation of oxalic acid to produce hydrogen peroxide that induces plant defense response to pathogen and results in enhanced-resistance. The open-reading-frame sequenceof BvGLP1 was synthesized and used to construct a BvGLP1 expression vector pA20-RSS1P::BvGLP1. In the vector, the expression of BvGLP1 was controlled by rice sucrose synthase-1 promoter (RSS1P). BvGLP1 was introducedinto wheat variety Yangmai 18 through bombardment. The presence and expression of BvGLP1 in T0 to T3 transgenic wheat plants were characterized by PCR, RT-PCR, and QPCR analyses. The common root rot and sharp eyespot disease tests on BvGLP1 transgenic wheat plants following artificial inoculation with the pathogens revealed that the expression of BvGLP1 in five transgenic wheat lines significantly enhanced resistance to common root rot.

Key words: Germin-like protein, BvGLP1, Transgenic wheat, Wheat common root rot, Resistance

[1]Chen Y-X(陈延熙), Tang W-H(唐文华), Zhang D-H(张敦华), Jian X-Y(简小鹰). A preliminary study on etiology of sharp eye-spot of wheat in China. Acta Phytophyl Sin (植物保护学报), 1986, 13(1): 39–44 (in Chinese with English abstract)

[2]Lu Y(路妍), Zhang Z-Y(张增艳), Ren L-J(任丽娟), Liu B-Y(刘宝业), Liao Y(廖勇), Xu H-J(徐惠君), Du L-P(杜丽璞), Ma H-X(马鸿翔), Ren Z-L(任正隆), Jing J-X(井金学), Xin Z-Y(辛志勇). Molecular analyses on Rs-AFP2 transgenic wheat plants and their resistance to Rhizoctonia cerealis. Acta Agron Sin (作物学报), 2009, 35(4): 640–646 (in Chinese with English abstract)

[3]Kumar J, Schafer P, Hückelhoven R, Langen G, Baltruschat H, Stein E, Nagarajan, S, Kogel K H. Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular ap-proaches towards better control. Mol Plant Pathol, 2002, 3: 185–195

[4]Knecht K, Seyffarth M, Desel C, Thurau T, Sherameti I, Lou B, Oelmüller R, Cai D. Expression of BvGLP-1 encoding a ger-min-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phyto- pathogenic fungi. Mol Plant-Microbe Interact, 2010, 23: 446–457

[5]Breen J, Bellgard M. Germin-like proteins (GLPs) in cereal ge-nomes: gene clustering and dynamic roles in plant defence. Funct Integr Genom, 2010, 10: 463–476

[6]Lane B G, Dunwell J M, Ray J A, Schmitt M R, Cuming A C. Germin, a protein marker of early plant development, is an ox-alate oxidase. J Biol Chem, 1993, 268: 12239–12242

[7]Olson P D, Varner J E. Hydrogen peroxide and lignifications. Plant J, 1993, 4: 887–892

[8]Wei Y D, Zhang Z G, Andersen C H, Schmelzer E, Gregersen P L, Collinge D B, Smedegaard-Petersen V, Thordal-Christensen H. An epidermis/papilla-specific oxalate oxidase-like protein in the defense response of barley attacked by the powdery mildew fun-gus. Plant Mol Biol, 1998, 36: 101–112

[9]Fry S C. Oxidative scission of plant cell wall polysaccharides by ascorbate induced hydroxyl radicals. Biochem J, 1998, 332: 507–515

[10]Caliskan M, Cuming A C. Spatial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germina-tion. Planta, 1998, 15: 165–171

[11]Caliskan M, Turet M, Cuming A C. Formation of wheat (Triticum aestivum L.) embryogenic callus involves peroxide-generating germin-like oxalate oxidase. Planta, 2004, 219: 132–140

[12]Lane B G. Oxalate, germin, and the extracellular matrix of higher plants. FASEB J, 1994, 8: 294–301

[13]Zhou F, Zhang Z, Gregersen P L, Mikkelsen J D, de Neergaard E, Collinge D B, Thordal-Christensen, H. Molecular characteriza-tion of the oxalate oxidase involved in the response of barley to the powdery mildew fungus. Plant Physiol, 1998, 117: 33–41

[14]Chen Z, Silvah H, Klessig D F. Active oxygen species in the in-duction of plant systemic acquired resistance by salicylic acid. Science, 1993, 262: 1883–1886

[15]Dumas B, Freyssinet G, Pallett K E. Tissue-specific expression of germin-like oxalate oxidase during development and fungal in-fection of barley seedlings. Plant Physiol, 1995, 107: 1091–1096

[16]Donaldson P A, Anderson T, Lane B G, Davidson A L, Sim-monds D H. Soybean plants expressing an active oligomeric ox-alate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotinia sclerotiorum. Physiol Mol Plant Pathol, 2001, 59: 297–307

[17]Dong X, Ji R, Guo X, Foster S J, Chen H, Dong C, Liu Y, Hu Q, Liu S. Expressing a gene encoding wheat oxalate oxidase en-hances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta, 2008, 228: 331–340

[18]Liang H, Maynard C A, Allen R D, Powell W A. Increased Sep-toria musiva resistance in transgenic hybrid poplar leaves ex-pressing a wheat oxalate oxidase gene. Plant Mol Biol, 2001, 45: 619–629

[19]Ramputh A, Arnason J, Cass L, Simmonds J. Reduced herbivory of the European corn borer (Ostrinia nubilalis) on corn trans-formed with germin, a wheat oxalate oxidase gene. Plant Sci, 2002, 162: 431–440

[20]Zimmermann G, Bäumlein H, Mock H P, Himmelbach A, Schweizer P. The multigene family encoding germin-like pro-teins of barley. Regulation and function in basal host resistance. Plant Physiol, 2006, 142: 181–192

[21]Li Z(李钊), Zhuang H-T(庄洪涛), Du L-P(杜丽璞), Zhou M-P(周淼平), Cai S-B(蔡士宾), Xu H-J(徐惠君), Li S-S(李斯深), Zhang Z-Y(张增艳). Utilization of tissue specific expressing promoter RSS1P in TiERF1 transgenic wheat. Acta Agron Sin (作物学报), 2011, 37(10): 1897–1903 (in Chinese with English abstract)

[22]Xu H-J(徐惠君), Pang J-L(庞俊兰), Ye X-G(叶兴国), Du L-P(杜丽璞), Li L-C(李连城), Xin Z-Y(辛志勇), Ma Y-Z(马有志), Chen J-P(陈剑平), Chen J(陈炯), Cheng S-H(程顺和), Wu H-Y(吴宏亚). Study on the gene transferring of Nib8 into wheat for its resistance to the Yellow mosaic virus by bombardment. Acta Agron Sin (作物学报), 2001, 27(6): 684–689 (in Chinese with English abstract)

[23]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 2001, 25: 402–408

[24]Dong N, Liu X, Lu Y, Du L P, Xu H J, Liu H X, Xin Z Y, Zhang Z Y. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fun-gal pathogen Bipolaris sorokiniana. Func Integr Genomics, 2010, 10: 215–226

[25]Cai S-B(蔡士宾), Ren L-J(任丽娟), Yan W(颜伟), Wu J-Z(吴纪中), Chen H-G(陈怀谷), Wu X-Y(吴小有), Zhang X-Y(张仙义). Germplasm development and mapping of resistance to sharp eyespot (Rhizoctonia cerealis) in wheat. Sci Agric Sin (中国农业科学), 2006, 39(5): 928–934 (in Chinese with English abstract)

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[3] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[4] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[5] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[6] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[7] YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634.
[8] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[9] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[10] XI Ling, WANG Yu-Qi, ZHU Wei, WANG Yi, CHEN Guo-Yue, PU Zong-Jun, ZHOU Yong-Hong, KANG Hou-Yang. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province [J]. Acta Agronomica Sinica, 2021, 47(7): 1309-1323.
[11] ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113.
[12] MA Yan-Bin, WANG Xia, LI Huan-Li, WANG Pin, ZHANG Jian-Cheng, WEN Jin, WANG Xin-Sheng, SONG Mei-Fang, WU Xia, YANG Jian-Ping. Transformation and molecular identification of maize phytochrome A1 gene (ZmPHYA1) in cotton [J]. Acta Agronomica Sinica, 2021, 47(6): 1197-1202.
[13] ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun. Seedling root characteristics and drought resistance of wheat in Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(4): 714-727.
[14] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[15] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!