Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (11): 2039-2045.doi: 10.3724/SP.J.1006.2013.02039

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Short-medium Term Preservation of Rice Suspension Cells

GAO Yi-Ping1,2,LÜ Meng-Yu1,ZHAO He1,YANG Xue-Ju2,*,WANG Hai-Bo1,*   

  1. 1 Institute of Genetics and Physiology, Hebei Academy of Agricultural and Forestry Sciences, Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; 2 College of Agriculture, Agricultural University of Hebei, Baoding 071001, China
  • Received:2013-05-13 Revised:2013-06-09 Online:2013-11-12 Published:2013-08-14
  • Contact: 王海波, E-mail: nkywanghb@yahoo.com.cn; 杨学举, E-mail: shmyxj@hebau.edu.cn E-mail:hebgyp@163.com

Abstract:

The preservation of cell suspension in short-medium term is widely needed in cell biology. In this paper, the preservation efects of cell suspension of rice cultivar Zhonghua 15 on AA, N6, and MS solid culture media were compared. The results showed that AA medium was suitable for suspension cells preservation. The cell suspension still kept resuspensible after growing continuously on AA solid medium for 4 months, and then on AA medium supplemented with 0.5 mg L-1 2,4-D for 6 months (subcultured at about 45 d interval). Three kinds of methods of suspension cells preservation, namely preservation on AA solid medium, cryopreservation, and continuously suspending culture, were compared. The results indicated that the first method kept good suspensible property, had high regeneration rate, and had a little influence on activity of POD and SOD, even though the suspension cells grew on AA medium for 2–9 months. AA solid medium is ideal for the preservation of suspension cells in short-middle-term.

Key words: Rice, Suspension cell, Cryopreservation, Plant regeneration, POD, SOD

[1]Wang M(王满), Li X(李霞), Shi M-D(石牡丹), Qian B-Y(钱宝云), Wei X-D(魏晓东), Fang X-W(方先文). Optiming cell suspension culture of mature embryo of transgenic C4 phosphoenolpyruvate carboxylase (pepc) rice. Mol Plant Breed(分子植物育种), 2012, 10 (6): 644−654 (in Chinese with English abstract)



[2]Wang C-Y(王藏月), Wang F-R(王凤茹), Dong J-G(董金皋). Proteomic analysis of rice suspension cultured cells treated with brassinosteroids. J Agric Univ Hebei (河北农业大学学报), 2011, 34(1): 62−67 (in Chinese with English abstract)



[3]Xu L-L(徐林林), Lu D(芦笛), Lu W(陆巍), Zhang R-X(张荣铣), Yang Q(杨清). Establishment of suspension cell line of rice (Oryza sativa L.) and effects of different media on biomass. Plant Physiol Commun (植物生理学通讯). 2006, 42(4): 612−616 (in Chinese with English abstract)



[4]Meijer E G M, Van I E, Schrijnemakers E, Hensgens L A M, Van Zijderveld M, Schilperoort R A. Retention of the capacity to produce plants from protoplasts in cryopreserved cell lines of rice (Oryza sativa L.). Plant Cell Rep, 1991, 10: 171−174



[5]Yin D-D(尹德东), Hu B-Z(胡宝忠). Establishment and cryopreservation of rice suspension cells line. J Northeast Agric Univ (东北农业大学学报), 2006, 37 (6): 750−754 (in Chinese with English abstract)



[6]Yan Q-F(严庆丰), Wang J-H(王君晖), Huang C-N(黄纯农), Yan Q-S(颜秋生), Zhang X-Q(张雪琴). Studies on cryopreservation of rice (Oryza sativa L.) suspension cultures. Acta Biol Exp Sin (实验生物学报), 1994, 27(4): 399−409 (in Chinese with English abstract)



[7]Cho J S, Hong S M, Joo S Y, Yoo J S, Kim D I. Cryopreservation of transgenic rice suspension cells producing recombinant hCTLA4Ig. Appl Microbiol Biotechnol, 2007, 73: 1470−1476



[8]Huang C-N(黄纯农), Wang J-H(王君晖), Yan Q-F(严庆丰), Yan Q-S(颜秋生), Zhang X-Q(张雪琴). Preservation of barley and rice cell suspension cultures in liguid nitrogen by vitrification. J Huangzhou Univ (Nat Sci)(杭州大学学报?自然科学版), 1994, 21 (1): 114−115 (in Chinese)



[9]Liu F(刘峰), Wang J-H(王君晖), Huang C-N(黄纯农), Yan Q-S(颜秋生), Zhang X-Q(张雪琴). Ultrastructural changes in rice embryogenic suspension cells cryopreserved by vitrification. Chin J Rice Sci(中国水稻科学), 1998, 12 (1): 17−20 (in Chinese with English abstract)



[10]Shibli R A, Haagenson D M, Cunningham S M, Berg W K, Volenec J J. Cryopreservation of alfalfa (Medicago sativa L.) cells by encapsulation-dehydration. Plant Cell Rep, 2001, 20: 445−450



[11]Zeng B-Y(曾博雅), Wang Z(王智), Zhang Y-F(张云峰), Yang Q(杨清), Lu W(陆巍). Cryopreservation of rice (Oryza sativa L.) embryonic cell suspensions by encapsulation-dehydration. Plant Physiol Commun (植物生理学通讯), 2009, 45(6): 603−606 (in Chinese with English abstract)



[12]Burritt D J. Efficient cryopreservation of adventitious shoots of Begonia ? erythrophylla using encapsulation-dehydration requires pretreatment with both ABA and praline. Plant Cell Tissue Organ Cult, 2008, 95: 209−215



[13]Hirai D, Sakai A. Cryopreservation of in vitro-grown meristems of potato (Solanum tuberosum L.) by encapsulation-vitrification. Potato Res, 1999, 42: 153−160



[14]Kong L S, von Aderkas P. A novel method of cryopreservation without a cryoprotectant for immature somatic embryos of conifer. Plant Cell Tiss Organ Cult, 2011, 106: 115−125



[15]Engelmann F. In vitro conservation methods. In: Callow J A, Ford-Lloyd B V, Newbhrg H J, eds. Biotechnology and Plant Genetic Resources. Oxford: CAB International, 1997. pp 119−161



[16]Wang Q C, Perl A. Cryopreservation in floricultural plants. In: Teixeira D A, Silva J A, eds. Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues. London: Global Science Books, 2006. pp 523−539



[17]Harding K. Genetic integrity of cryopreserved plant cells: a review. Cryo Lett, 2004, 25: 3−22



[18]Withers L A, Engelmann F. In vitro conservation of plant genetic resources. In: Altman A ed. Agricultural Biotechnology. New York, Marcel Dekker Inc., 1998. pp 57−88



[19]Benson E E. Cryopreservation of phytodiversity: a critical appraisal of theory practice. Crit Rev Plant Sci, 2008, 27(3): 141−219



[20]Panis B, Lambardi M. Status of cryopreservation technologies in plants (crops and forest trees). In: Ruane J, Sonnino A, eds. The Role of Biotechnology in Exploring and Protecting Agricultural Genetic Resources. Rome: FAO, 2006. pp 61−78



[21]Wang B, Yin Z F, Feng C H, Shi X, Li Y P, Wang Q C. Cryopreservation of potato shoot tips. In: Benkeblia N, Tennant P, eds. Potato I. Fruit, Vegetable and Cereal Science and Biotechnology 2 (Special Issue 1). London: Global Science Book, 2008. pp 46−53



[22]Feng C H, Yin Z F, Ma Y L, Zhang Z B, Chen L, Wang B, Li B Q, Huang Y S, Wang Q C. Cryopreservation of sweetpotato (Ipomoea batatas) and its pathogen eradication by cryotherapy. Biotechnol Adv, 2011, 29: 84−93



[23]Moriguchi T, Kozaki I, Yamaki S, Sanada T. Low temperature storage of pear shoots in vitro. Bull Fruit Tree Res Stn, 1990, 17: 11−18



[24]Wang H-B(王海波). Concept of the cell state and its significance in life science. Sci & Technol Rev (科技导报), 2008, 26 (4): 41−46 (in Chinese with English abstract)



[25]Xing D-H(邢登辉), Wu Q-S(吴琴生), Liu D-J(刘大钧). The cell culture of cereal crops- induction and expression of somatic embryogenic potential. Bull Biol (生物学通报), 1994, 29(7): l−3 (in Chinese)



[26]Li C-Y(李春燕), Chen S-S(陈思思), Xu W(徐雯), Li D-S(李东升), Gu X(顾骁), Zhu X-K(朱新开), Guo W-S(郭文善), Feng C-N(封超年). Effect of low temperature at seedling stage on antioxidation enzymes and cytoplasmic osmoticum of leaves in wheat cultivar Yangmai 16. Acta Agron Sin (作物学报), 2011, 37(12): 2293−2298 (in Chinese with English abstract)



[27]Coppens L, Gillis E. Isoenzyme electrofocusing as a biochemical marker system of embryogenesis and organogenesis in callus tissues of Hordeumvulgare. Plant Physiol, 1987, 127: 153−158



[28]Rewal S K, Mehta A R. Changes in enzyme activity and isoperoxidases in haploid tobacco callus during organogenesis. Plant Sci Lett, 1982, 24: 67−77

[1] HUANG Ting-Miao, YU Rong, WANG Zhao-Hui, HUANG Dong-Lin, WANG Sen, JIN Jing-Jing. Effects of different forms and application methods of selenium fertilizers on wheat selenium uptake and utilization and its residual availability [J]. Acta Agronomica Sinica, 2022, 48(6): 1516-1526.
[2] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[3] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[4] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[5] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[6] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[7] WANG Xuan-Dong, YANG Sun-Yu-Yue, GAO Run-Jie, YU Jun-Jie, ZHENG Dan-Pei, NI Feng, JIANG Dong-Hua. Screening Streptomyces against Xanthomonas axonopodis pv. glycines and study of growth-promoting and biocontrol effect [J]. Acta Agronomica Sinica, 2022, 48(6): 1546-1557.
[8] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[9] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[10] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[11] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[12] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[13] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[14] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[15] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!