Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (02): 205-213.

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Association of Genetic Diversity for Amy6-4 Gene with α-Amylase Activity in Germplasm of Barley

JIANG Xiao-Dong1,2,GUO Gang-Gang1,ZHANG Jing1,*   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
  • Received:2013-06-22 Revised:2013-09-16 Online:2014-02-12 Published:2013-11-14
  • Contact: 张京, E-mail: zhangjing03@caas.cn, Tel: 010-62189624

Abstract:

Amy6-4 is one of the genes codingα-amylase with high isoelectric point, which plays an important role in germination and malting process in barley (Hordeum vulgare L.). To detect the intervarietal polymorphism on Amy6-4 locus, we resequenced the Amy6-4 alleles in 58 barley varieties that are deposited in the germplasm bank of China, and analyzed the association of single nucleotide polymorphisms (SNPs) and haplotypes with α-amylase activity based on the population structure. A total of seven SNPs in five haplotypes were detected among the 58 barley entries. Haplotype H_3 was most popular with frequence of 51.7% (30/58) in the entries tested, and haplotype H_1 ranked the second with frequnce about 39.7% (23/58). However, the remaining three haplotypes only shared about 10% of the frequency. No SNP or haplotype was associated with α-amylase activity.

Key words: Barley, Genetic diversity, Haplotype, Linkage disequilibrium, Association analysis

[1]Knox C A P, Sonthayanon B, Chandra G R, Muthukrishnan S. Structure and organization of two divergent α-amylase genes from barley. Plant Mol Biol, 1987, 9: 3–17



[2]Rogers J C. Two barley alpha-amylase gene families are regulated differently in aleurone cells. J Biol Chem, 1985, 260: 3731–3738



[3]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S . Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286–289



[4]谭贤杰, 宋燕春, 石云素, 程伟东, 吴子恺, 王天宇, 黎裕. 玉米Bubisco活化酶基因ZmRCA1的序列变异分析. 作物学报, 2011, 37: 58–66



Tan X J, Song Y C, Shi Y S, Cheng W D, Wu Z K, Wang T Y, Li Y. Analysis of sequence polymorphism of ZmRCA1 in maize. Acta Agron Sin, 2011, 37: 58–66 (in Chinese with English abstract)



[5]张洪映, 毛新国, 景蕊莲, 谢惠民, 昌小平. 小麦TaPK7 基因单核苷酸多态性与抗旱性的关系. 作物学报, 2008, 34: 1537–1543



Zhang H Y, Mao X G, Jing R L, Xie H M, Chang X P. Relationship between Single Nucleotide Polymorphism of TaPK7 Gene. Acta Agron Sin, 2008, 34: 1537–1543 (in Chinese with English abstract)



[6]王关林, 方宏筠. 植物基因工程(第2版). 北京: 科学出版社, 2002. pp 744–745



Wang G L, Fang H J. Plant gene engineering, 2nd edn. Beijing: China Science Press, 2002. pp 744–745 (in Chinese)



[7]Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959, 31: 426–428



[8]Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res, 1994, 22: 4673–4680



[9]Rozas J, Sánchez-DelBarrio J C, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 2003, 19: 2496–2497



[10]Watterson G A. On the number of segregating sites in genetical models without recombination. Theor Pop Biol, 1975, 7: 256−276



[11]Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 76: 5269−5273



[12]Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 1989, 123: 585−595



[13]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599



[14]Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945–959



[15]Robert X, Haser R, Gottschalk T E, Ratajczak F, Driguez H, Svensson B, Aghajari N. The structure of barley alpha-amylase isozyme 1 reveals a novel role of domain C in substrate recognition and binding: a pair of sugar tongs. Structure, 2003, 11: 973–984



[16]Matthies I E, Weise S, Röder M S. Association of haplotype diversity in the α-amylase gene amy1 with malting quality parameters in barley. Mol Breed, 2003, 23: 139–152



[17]Bozonnet S, Jensen M T, Nielsen M M, Aghajari N, Jensen M H, Kramhøft B, Willemoës M, Tranier S, Haser R, Svensson B. The ‘pair of sugar tongs’ site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity. FEBS J, 2007, 274: 5055–5067



[18]Yang X, Westcott S, Gong X, Evans E, Zhang X Q, Lance R C M, Li C D. Amino acid substitutions of the limit dextrinase gene  in barley are associated with enzyme thermostability. Mol Breed, 2009, 23: 61–74



[19]Fox G P, Panozzo J F, Li C D, Lance C M, Inkerman P A, Henry R J. Molecular basis of barley quality. Aust J Agric Res, 2003, 54: 1081–1101



[20]Fleet C M, Sun TP. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol, 2005, 8: 77–85



[21]Gubler F, Kalla R, Roberts J K, Jacobsen J V. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell, 1995, 7: 1879–1891



[22]Rogers J C, Lanahan M B, Rogers S W. The cis-acting gibberellin response complex in high pI alpha-amylase gene promoters requirement of a coupling element for high-level transcription. Plant Physiol, 1994, 105: 151–158



[23]Ülker B, Somssich I E. WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol, 2004, 7: 491–498



[24]Umemura T, Perata P, Futsuhara Y, Yamaguchi J. Sugar sensing and alpha-amylase gene repression in rice embryos. Planta, 1998, 204: 420–428



[25]Perata P, Matsukura C, Vernieri P, Yamaguchi J. Sugar repression of a gibberellin-dependent signaling pathway in barley embryos. Plant Cell, 1997, 9: 2197–2208



[26]Bush D S. Calcium regulation in plant cells and its role in signaling. Plant Physiol Plant Mol Biol, 1995, 46: 95–122



[27]Lovegrove A, Hooley R. Gibberellin and abscisic acid signalling in aleurone. Trends Plant Sci, 2000, 5: 102–110



[28]Ayoub M, Armstrong E, Bridger G, Fortin M G, Mather D E. Marker-based selection in barley for a QTL region affecting alpha-amylase activity of malt. Crop Sci, 2003, 43: 556–561



[29]Li C D, Tarr A, Lance R C M, Harasymow S, Uhlmann J, Westcot S, Young K J, Grime C R, Cakir M, Broughton S, Appels R. A major QTL controlling seed dormancy and pre-harvest sprouting/grain α-amylase in two-rowed barley (Hordeum vulgare L.). Aust J Agric Res, 2003, 54: 1303–1313



[30]Zhang X Q, Li C D, Panozzo J, Westcott S, Zhang G P, Tay A, Appels R, Jones M, Lance R. Dissecting the telomere region of barley chromosome 5HL using rice genomic sequences as references: new markers for tracking a complex region in breeding. Mol Breed, 2011, 27: 1–9



[31]Marquez-Cedillo L A , Hayes P M, Jones B L, Kleinhofs A, Legge W G , Rossnagel B G, Sato K, Ullrich S E, Wesenberg D M. QTL analysis of malting quality in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet, 2000, 101: 173–184

[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[3] YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190.
[4] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[5] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[6] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[7] HE Jun-Yu, ZHONG Wei, CHEN Yun-Qiong, WANG Wei-Bin, XIONG Jing-Lei, JIANG Ya-Li, SHI Hui-Meng, CHEN Sheng-Wei. Analysis on the accumulation characteristics of seven flavonoids at grain development stage in barley [J]. Acta Agronomica Sinica, 2021, 47(8): 1624-1630.
[8] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[9] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[10] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[11] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[12] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[13] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[14] JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261.
[15] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!