Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (02): 214-221.doi: 10.3724/SP.J.1006.2014.00214
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WU Ya-Hui,TAO Xing-Xing,XIAO Wu-Ming*,GUO Tao,LIU Yong-Zhu,WANG Hui,CHEN Zhi-Qiang*
[1]靳德明, 王维金, 蓝盛银, 徐珍秀, 杨书化. 培矮64s/E32产量构成因素和穗部性状的杂种优势及相关分析. 华中农业大学学报, 2001, 20: 516–521Jin D M, Wang W J, Lan S Y, Xu Z X, Yang S H. Heterosis and correlative analysis of yield components and panicle characters of Pei’ai 64s/E32. J Huazhong Agric Univ, 2001, 20: 516–521 (in Chinese with English abstract)[2]徐正进, 陈温福, 孙占惠, 张树林, 刘丽霞, 周淑清. 辽宁水稻籽粒在穗轴上分布特点及其与结实性的关系. 中国农业科学, 2004, 37: 963–967Xu Z J, Chen W F, Sun Z H, Zhang S L, Liu L X, Zhou S H. Distribution of rice grain on panicle axis and its relationship with seed setting in Liaoning. Sci Agric Sin, 2004, 37: 963–967 (in Chinese with English abstract)[3]董桂春, 居静, 于小风, 张燕, 赵江宁, 李进前, 田昊, 张彪, 王余龙. 不同穗重类型常规籼稻品种产量形成的差异研究. 扬州大学学报(农业与生命科学版), 2010, 31(1): 49–54Dong G C , Ju J, Yu X F, Zhang Y, Zhao J N, Li J Q, Tian H, Zhang B, Wang Y S. Study of difference of yield formation in conventional Indica rice cultivars with different panicle weight. J Yangzhou Univ (Agric & Life Sci Edn), 2010, 31(1): 49–54 (in Chinese with English abstract)[4]郭龙彪, 罗利军, 邢永忠, 徐才国, 梅捍卫, 王一平, 钟代彬, 钱前, 应存山, 石春海. 水稻重要农艺性状的2年QTL剖析. 中国水稻科学, 2003, 17: 211–218Guo L B, Luo L J, Xing Y Z, Mei H W, Wang Y P, Zhong D B, Qian Q, Ying C S, Shi C H. Dissection of QTLs in two years for important agronomic traits in rice (Oryza sativa L.). Chin J Rice Sci, 2003, 17: 211–218 (in Chinese with English abstract)[5]叶少平, 张启军, 李杰勤, 赵兵, 李平. 用(培矮64s/Nipponbare) F2群体对水稻产量构成性状的QTL定位分析. 作物学报, 2005, 31: 1620–1627Ye S P, Zhang Q J, Li J Q, Zhao B, Li P. QTL mapping for yield component traits using (Pei’ai 64s/Nipponbare) F2 population. Acta Agron Sin, 2005, 31: 11–17 (in Chinese with English abstract)[6]程桂平, 冯九焕, 梁国华, 刘向东, 李金泉. 栽培稻与普通野生稻BC2F2群体产量相关性状的QTL分析. 中国水稻科学, 2006, 20: 553–556Cheng G P, Feng J H, Liang G H, Liu X D, Li J Q. Identification of QTLs for agronomic traits associated with yield in a BC2F2 population between Oryza sativa and Oryza rufipogon. Chin J Rice Sci, 2006, 20: 533–556 (in Chinese with English abstract)[7]申宗坦. 作物育种学实验. 北京: 中国农业出版社, 1995. pp 102–107Shen Z T. Crop Breeding Experiment. Beijing: China Agriculture Press, 1995. pp 102–107 (in Chinese)[8]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinosita T. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11–13[9]Lorieux M, Perrier X, Goffinet B, Lanaud C, De León D G. Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theor Appl Genet, 1995, 90: 73–80[10]Lorieux M, Perrier X, Goffinet B, Lanaud C, De León D G. Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations. Theor Appl Genet, 1995, 90: 81–89[11]朱成松, 王付华, 王建飞, 李广军, 张红生, 章元明. 回交、DH和RIL偏分离群体遗传图谱的重新构建. 科学通报, 2007, 52: 918–922Zhu C S, Wang F H, Wang J F, Li G J, Zhang H S, Zhang Y M. Genetic maps reconstruct of backcross, DH, and RIL segregation distortion populations. Chin Sci Bull, 2007, 52: 918–922 (in Chinese)[12]Wang J K, Li H H, Zhang L Y, Meng L. Users’ Manual of QTL IciMapping Version 3.2, 2012[13]Mangin B, Thoquet P, Grimsley N, Pleiotropic QTL analysis. Biometrics, 1998, 54: 88–99[14]Freyer G, Sørensen P,Kühn C,Weikard R,Hoeschele I. Search for pleiotropic QTL on chromosome BTA6 affecting yield traits of milk production. J Dairy Sci, 2003, 86: 999–1008[15]Sun F, Liu P, Ye J, Lo L C, Cao S Y, Li L, Yue G H, Wang C M. An approach for jatropha improvement using pleiotropic QTLs regulating plant growth and seed yield. Biotech Biof, 2012, 5: 1–10[16]Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xing Y Z. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4: 319–330[17]Cai H, Morishima H. QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet, 2002, 104: 1217–1228[18]邢永忠, 徐才国, 华金平, 谈移芳. 水稻穗部性状的QTL与环境互作分析. 遗传学报, 2001, 28: 439–446Xing Y Z, Xu C G, Hua J P, Tan Y H. Analysis of QTL×environment interaction for rice panicle characteristics. Acta Genet Sin, 2001, 28: 439–446 (in Chinese with English abstract)[19]李绍波, 杨国华, 章志宏, 李绍清, 李阳生, 朱英国. 直播条件下水稻6个穗部性状的QTL分析. 武汉植物学研究, 2009, 27: 467–472Li S B, Yang G H, Zhang Z H, Li S Q, Li Y S, Zhu Y G. Mapping of QTL controlling 6 panicle traits of rice under direct-sowing environment. J Wuhan Bot Res, 2009, 27: 467–472 (in Chinese with English abstract)[20]沈希宏, 曹立勇, 陈深广, 占小登, 吴伟明, 程式华. 超级杂交稻协优9308重组自交系群体的穗部性状QTL分析. 中国水稻科学, 2009, 23: 354–362Shen X H, Cao L Y, Chen S G, Zhan X D, Wu W M, Cheng S H. Dissection of QTLs for panicle traits in recombinant inbred lines derived from super hybrid rice, Xieyou 9308. Chin J Rice Sci, 2009, 23: 354–362 (in Chinese with English abstract)[21]王智权, 刘喜, 江玲, 刘世家, 陈亮明, 尹长斌, 翟虎渠, 万建民. 控制水稻穗形相关性状的QTL定位. 江苏农业学报, 2011, 27: 5–12Wang Z Q, Liu X, Jiang L, Liu S J, Chen L M, Yin C B, Zhai H Q, Wan J M. Ditection of QTLs for related traits of panicle in rice (Oryza sativa L.). Jiangsu J Agric Sci, 2011, 27: 5–12 (in Chinese with English abstract)[22]刘头明. 水稻每穗颖花数的遗传基础剖析及其主效QTLs精细定位. 华中农业大学博士学位论文. 2009Liu T M. Dissection of the Genetic Bases of the Number of Spikelets per Panicle and Fine Mapping of Its Major QTLs. PhD Dissertation of Huazhong Agricultural University, 2009 (in Chinese with English abstract)[23]Marathi B, Guleria S, Mohapatra T, Parsad R, Mariappan N, Kurungara N, Atwal S S, Prabhu K V, Singh N K, Singh A K. QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (Oryza sativa L.). BMC Plant Biol, 2012, 12: 137[24]黄成. 水稻几个农艺性状的QTL分析. 沈阳农业大学硕士学位论文, 2010Huang C. QTL Analysis of Several Rice Agronomic Characters. Master’s Dissertation of Shenyang Agricultural University, 2009 (in Chinese with English abstract)[25]Mei H W, Xu J L, Li Z K, Yu X Q, Guo L B, Wang Y P, Ying C S, Luo L J. QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Theor Appl Genet, 2006, 112: 648–656[26]Jing Z B, Qu Y Y, Pan D J, Fan Z L, Chen J Y, Li C. QTL analysis of yield-related traits using an advanced backcross population derived from common wild rice (Oryza rufipogon L.). Mol Plant Breed, 2010, 1: 1–10 [27]Bai X F, Luo L J, Yan W H, Kovi M R, Xing Y Z. Quantitative trait loci for rice yield-related traits using recombinant inbred lines derived from two diverse cultivars. J Genet, 2011, 90: 209–215 |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[7] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[8] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[9] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[10] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[11] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[12] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[13] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[14] | WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961. |
[15] | QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004. |
|