Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (09): 1540-1548.doi: 10.3724/SP.J.1006.2014.01540

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning, Expression, and Functional Analysis of GhMYB0 Gene from Cotton (Gossypium hirsumtum L.)

WANG Nuo-Han1,2,YU Ji-Wen2,WU Man2,MA Qi-Feng1,LI Xing-Li2,PEI Wen-Feng2,LI Hai-Jing2,HUANG Shuang-Ling2,ZHANG Jin-Fa2,YU Shu-Xun1,2,   

  1. 1 College of Agronomy, Northwest A&F University, Yangling 712100, China; 2 State Key Laboratory of Cotton Biology / Cotton Research Institute , Chinese Academy Agricultural Sciences, Anyang 455000, China
  • Received:2014-01-23 Revised:2014-06-16 Online:2014-09-12 Published:2014-07-09
  • Contact: 喻树迅, E-mail: yu@cricaas.com.cn

Abstract:

MYB transcription factor, one of the most important protein families in plants, is involved in the regulation of secondary metabolism, morphogenesis of plant, responding to environment stress and plant hormone. In this study, we used D5 genomic bank of Gossypium raimondii as the reference to AtMYB0 (GL1, NM_113708) protein, and cloned the full-length cDNA of a new MYB transcription factor gene GhMYB0 from cotton (Gossypium hirsutum L.). The open reading frame of GhMYB0 is 843 bp in length, which encodes 280 amino acid residues. GhMYB0 was confirmed as R2R3-MYB transcription factor via conserved structure analysis and subcellular localization. The qRT-PCR result indicated that GhMYB0 was highly expressed at the blossom day, its expresssion amount reached the peak after 20 days, with the most amount in flower, then in ovules. Transgenic funtion analysis indicated that GhMYB0 over-expressed in Arabidopsis lines, showing fewer trichomes in leaf epiderm than in that of the wild type, which suggests that the gene can restore the notrichome phenotype of gl-1 mutant of Arabidopsis. In addition, the transgenic lines had shorter plant heights, longer vegetative growth time, and pollen abortion.

Key words: Cotton, MYB transcription factor, Construction of plant expression vector, Genetic transformation

[1]Ramsey J C, Berlin J D. Ultrastructure of early stage of cotton fiber differentiation. Bot Gazette, 1976, 137: 11–19



[2]Rinehart J A, Petersen M W, John M E. Tissue-specific and developmental regulation of cotton gene FbL2A (demonstration of promoter activity in transgenic plants). Plant Physiol, 1996, 112: 1331–1334



[3]Stewart J M. Fiber initiation on the cotton ovule (Gossypium hirsutum). Am J Bot, 1975, 62: 723–730



[4]Paz A J, Ghosal D, Wienand U, Peterson P A, Saedler H. The regulatory C1 locus of Zea mays encodes a protein with homology to myb on-cogene products and with structural similarities to transcriptional activators. EMBO J, 1987, 6: 3553–3558



[5]Ogata K, Morikawa S, Nakamura H, Hojo H, Yoshimura S, Zhang R, Aimolo S, Ametani Y, Hirata Z, Sarai A, Ishii S, Nishimura Y. Comparison of the free and DNA complex forms of the DNA-binding domain of c-MYB. Nat Struct Biol, 1995, 2: 309–320



[6]Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010, 15: 573–581



[7]刘翔, 左开井, 张飞, 许洁婷, 黎颖, 赵凌侠, 唐克轩. MYB类转录因子在植物腺毛发育中的作用研究进展. 上海交通大学学报(农业科学版), 2010, 28(2): 188–194



Liu X, Zuo K J, Zhang F, Xu J T, Li Y, Zhao L X, Tang K X. Progress on the roles of MYB transcription factors on plant trichome development. J Shanghai Jiaotong Univ (Agric Sci), 2010, 28(2): 188–194 (in Chinese with English abstract)



[8]Ishida T, Kurata T, Okada K, Wada T. A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol, 2008, 59: 365–386



[9]Koshion-Kimura Y, Wada T, Tachibana T, Tsugeki R, Lshiguro S, Okada K. Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis. Plant Cell Physiol, 2005, 46: 817–826



[10]Larkin J C, Oppenheimer D G, Lloyd A M, Paparozzi E T, Marks M. Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development. Plant Cell, 1994, 6: 1065–1076



[11]Lee M M, Schiefelbein J. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell, 1999, 99: 473–483



[12]Lee M M, Schiefelbein J. Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis. Development, 2001, 128: 1539–1546



[13]Oppenheimer D G, Herman P L, Sivakumaran S, Esch J, Marks M. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell, 1991, 67:483–493



[14]Loguercio L L, Zhang J Q, Wilkins T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid (Gossypium hirsutum L.). Mol Gen Genet, 1999, 261:660–670



[15]Guan X, Lee J J, Pang M, Shi X, Stelly D M, Chen Z J. Activation of Arabidopsis seed hair development by cotton fiber-related genes. PLoS One, 2011, DOI: 10.1371/journal.pone.0021301



[16]Wu Y, Machado A C, White R G, Llewellyn D J, Dennis E S. Expression profiling identifies genes expressed early during lint fibre initiation in cotton. Plant Cell Physiol, 2006, 47: 107–127



[17]Lee J J, Hassan O S, Gao W, Wei N E, Kohel R J, Chen X Y, Payton P, Sze S H, Stelly D M, Chen Z J. Developmental and gene expression analyses of a cotton naked seed mutant. Planta, 2006, 223: 418–432



[18]Machado A, Wu Y, Yang Y, Llewellyn D J, Dennis E S. The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant J, 2009, 59: 52–62



[19]Suo J, Liang X, Pu L, Zhang Y, Xue Y. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochim Biophys Acta, 2003, 1630: 25–34



[20]宋国立, 崔荣霞, 王坤波, 郭立平, 黎绍惠, 王春英, 张香娣. 改良CTAB法快速提取棉花DNA. 棉花学报, 1998, 10: 273–275



Song G L, Cui R Y, Wang K B, Guo L P, Li S H, Wang C Y, Zhang X D. A rapid improved CTAB method for extraction of cotton genomic DNA. Acta Gossypii Sin, 1998, 10: 273–275 (in Chinese with English abstract)



[21]Steven J C, Andrew F B. Floral dip: a simpli?ed method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735–743



[22]Hülskamp M. Plant trichomes: a model for cell differentiation. Nat Rev Mol Cell Biol, 2004, 5: 471–480



[23]Li M Z, Elledge S J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods, 2007, 4: 251–256



[24]Mayer F X, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 1998, 95: 805–815



[25]Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Kanai H, Sarai A, Ishii S, Nishimura Y. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell, 1994, 79: 639–648



[26]Payne C, Zhang F, Lloyd A. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics, 2000, 156: 1349–1362



[27]Percival A E. The national collection of Gossypium germplasm. Southern Cooperative Series Bull, 1987, 12: 321–362



[28]Kirik V, Simon M, Huelskamp M, Schiefelbein J. The enhancer of TRY and CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Dev Biol, 2004, 268: 506–513



[29]Schellmann S, Schnittger A, Kirik V, Wada T, Okada K, Beermann A, Thumfahrt J, Jürgens G, Hülskamp M. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J, 2002, 21: 5036–5046



[30]Wang G, Zhao G H, Jia Y H, Du X M. Identification and characterization of cotton genes involved in fuzz-fiber development. J Integr Plant Biol, 2013, 55: 619–630



[31]Turley R B, Kloth R H. Identification of a third fuzzless seed locus in upland cotton (Gossypium hirsutum L.). J Hered, 2002, 93: 359–364



[32]Zhao M, Morohashi K, Hatlestad G, Grotewold E, Lloyd A. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development, 2008, 135: 1991–1999



[33]Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z L, Powers S J, Thomas S G. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell, 2006, 18: 3399–3414



[34]Wang K B, Wang Z W, Li F G, Ye W W, Wang J Y, Song G L, Yue Z, Cong L, Shang H H, Zhu S L, Zou C S, Yuan Y L, Lu C R, Wei H L, Gou C Y, Zheng Z Q, Yin Y, Zhang X Y, Liu K, Wang B, Song C, Shi N, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet, 2012, 44: 1098–1103



[35]Samuel Y S, Cheung F, Lee J J, Ha M, Wei N E, Sze S-H, Stelly D M, Thaxton P, Triplett B, Town C D, Jeffrey Chen Z. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J, 2006, 47: 761–775

[1] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[2] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[3] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[4] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[5] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[6] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[7] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[8] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[9] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[10] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[11] ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623.
[12] GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247.
[13] MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826.
[14] TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683.
[15] XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!