Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (11): 1914-1924.doi: 10.3724/SP.J.1006.2014.01914

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

SNP Detection and Analysis of Genes for Flavonoid Pathway in Yellow- and Black-Seeded Brassica napus L.

QU Cun-Min1,**,LU Kun1,**,LIU Shui-Yan1,BU Hai-Dong1,FU Fu-You2,WANG Rui1,XU Xin-Fu1,LI Jia-Na1,*   

  1. 1 Chongqing Rapeseed Technology Research Center of Southwest University, Chongqing 400716, China; 2 Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, S7N 02X, Saskatoon Saskatchewan, Canada
  • Received:2014-04-14 Revised:2014-09-16 Online:2014-11-12 Published:2014-10-01
  • Contact: 李加纳, E-mail: ljn1950@swu.edu.cn, Tel: 023-68251950

Abstract:

Flavonoids as the secondary metabolites play a crucial role in colour changing process of flower, leaf, fruit and seed. In this research, primers for amplifying full-length ORF sequences of the genes involved in the favonoid biosynthesis pathways were designed according to conserved nucleotide regions from the public databases. Using the homology-based cloning strategy, 41 gene copies were obtained from 13 genes using 17 pairs of specific primers in different yellow- and black-seeded seed coats of B. napus. Each of full-length ORF sequences was sequenced and analyzed in the levels of both nucleic acid and protein. The results showed that the SNPs in four flavonoid pathway genes (BnTT3, BnTT18, BnTTG1,and BnTTG2), ranged from 16 to 52, but there were olny 2 to 16 amino acid mutations detected in the protein level, indicating that the mutation of SNPs may not be involved in the mutation of amino acid. In addition, continuous bases deletion existed in different positions of sequence of BnTTG2 (119 to 121 bp, 183 to 189 bp and 325 to 330 bp), and two consistent amino acid mutation sites were detected in BnTT3 and BnTT18 among different materials, inferring that BnTT3 and BnTT18 may play an important role in difference of seed coat colour formation in yellow- and black-seeded B. napus. Therefore, these genes involved in flavonoid pathway could be distinguished by the allelic-specific PCR in yellow- and black-seeded B. napus. These results could help to develop specific seed coat gene chips and elucidate the genes and their action sites for the seed coat colour in B. napus

Key words: Brassica napus L., Flavonoid pathway, Single nucletide polymorphism (SNP), Yellow- and black-seeded, Transparent testa

[1]王晶, 孟金陵. 芸薹属作物基因组研究进展及其在育种中的意义. 分子植物育种, 2010, 8: 837–845



Wang J, Meng J L. Progress on genome research of Brassica crops and its significance for breeding. Mol Plant Breed, 2010, 8: 837–845 (in Chinese with English Abstract)



[2]Theander O, Aman P, Miksche G E, Yasuda S. Carbohydrate polyphenols and lignin in seed hulls of different colours from tumip rapeseed. J Agric Food Chem, 1977, 25: 270–273



[3]Somers D J, Rakow G, Prabhu V K, Friesen K R D. Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome, 2001, 44: 1077–1082



[4]Rahman M, Joersbo M, Poulsen M. Development of yellow-seeded Brassica napus of double low quality. Plant Breed, 2001, 120: 473–478



[5]肖达人, 刘后利. 甘蓝型油菜(Brassica napus L.)种皮颜色与种子含油量的相关分析. 作物学报, 1982, 8: 245–254



Xiao D R, Liu H L. Correlation analysis of seed colour and seed oil in Brassica napus L. Acta Agron Sin, 1982, 8: 245–254



[6]Shirzadegan M, Rbbelen G. Influence of seed color and hull proportion on quality properties of seeds in Brassica napus L. Fette, Seifen, Anstrichmittel, 1985, 87: 235–237



[7]Sensoz S, Angin D, Yorgun S. Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): fuel properties of bio-oil. Biomass Bioenergy, 2000, 19: 271–279



[8]Badani A G, Snowdon R G, Wittkop B, Lipsa F D, Baetzel R, Horn R, Haro A D, Font R, Lühs W, Friedt W. Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome, 2006, 49: 1499–1509



[9]Rahman M, Li G, Schroeder D, McVetty P. Inheritance of seed coat color genes in Brassica napus (L.) and tagging the genes using SRAP, SCAR and SNP molecular markers. Mol Breed, 2010, 26: 439–453



[10]Xiao S S, Xu J S, Li Y, Zhang L, Shi S J, Shi S W, Wu J S, Liu K D. Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome, 2007, 50: 611–618



[11]Zhang Y, Li X, Chen W, Yi B, Wen J, Shen J, Ma C, Chen B, Tu J, Fu T. Identification of two major QTL for yellow seed color in two crosses of resynthesized Brassica napus line No. 2127-17. Mol Breed, 2011, 28: 335–342



[12]Fu F Y, Liu L Z, Chai Y R, Chen L, Yang T, Jin M Y, Ma A F, Yan X Y, Zhang Z S, Li J N. Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome, 2007, 50: 840–854



[13]Liu Z W, Fu T D, Tu J X, Chen B Y. Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.). Theor Appl Genet, 2005, 110: 303–310



[14]Deynze A, Van , Landry B, Pauls K. The identification of restriction fragment length polymorphisms linked to seed colour genes in Brassica napus. Genome, 1995, 38: 534–542



[15]Yan J, Yang X, Shah T, Sánchez-Villeda H, Li J, Warburton M, Zhou Y, Crouch J H, Xu Y. High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed, 2010, 25: 441–451



[16]Akhunov E, Nicolet C, Dvorak J. Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet, 2009, 119: 507–517



[17]Westermeier P, Wenzel G, Mohler V. Development and evaluation of single-nucleotide polymorphism markers in allotetraploid rapeseed (Brassica napus L.). Theor Appl Genet, 2009, 119: 1301–1311



[18]Trick M, Long Y, Meng J, Bancroft I. Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J, 2009, 7: 334–346



[19]Albert S, Delseny M, Devic M. BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. Plant J, 1997, 11: 289–299



[20]Baudry A, Caboche M, Lepiniec L. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell specific accumulation of flavonoids in Arabidopsis thaliana. Plant J, 2006, 46: 768–779



[21]Chiu L W, Zhou X, Burke S, Wu X, Prior R L, Li L. The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol, 2010, 154: 1470–1480



[22]Devic M, Guilleminot J, Debeaujon I, Bechtold N, Bensaude E, Koornneef M, Pelletier G, Delseny M. The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. Plant J, 1999, 19: 387–398



[23]Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell Online, 2000, 12: 1863–1878



[24]Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell Online, 2001, 13: 2099–2114



[25]Xie D Y, Sharma SB, Paiva N L, Ferreira D, Dixon R A. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science, 2003, 299: 396–399



[26]Shikazono N, Yokota Y, Kitamura S, Suzuki C, Watanabe H, Tano S, Tanaka A. Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions. Genetics, 2003, 163: 1449–1455



[27]Routaboul JM, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L. Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta, 2006, 224: 96–107



[28]Meinke D W. Arabidopsis thaliana: a model plant for genome analysis. Science, 1998, 282: 662–682



[29]马爱芬, 李加纳, 谌利, 钱伟, 付福友, 刘列钊. 甘蓝型油菜种皮色泽相关基因的 cDNA-SRAP 差异显示. 作物学报, 2008, 34: 526–529



Ma A F, Li J N, Chen L, Qian W, Fu F Y, Liu L Z. Differential Display of Related Genes to Seed-Coat Color by cDNA-SRAP in Brassica napus L.. Acta Agron Sin, 2008, 34: 526–529 (in Chinese with English Abstract)



[30]曲存民, 付福友, 刘列钊, 王家丰, 毛丽佳, 原小燕, 谌利, 李加纳. 甘蓝型油菜胚色素成分的QTL定位. 作物学报, 2009, 35, 286–294



Qu C M, Fu F Y, Liu L Z, Wang J F, Mao L J, Yuan X Y, Chen L, Li J N. QTL Mapping of Embryonic Pigment Components in Brassica napus. Acta Agron Sin, 2009, 35: 286–294 (in Chinese with English Abstract)



[31]Auger B, Baron C, Lucas M O, Vautrin S, Bergès H, Chalhoub B, Fautrel A, Renard M, Nesi N. Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed. Planta, 2009, 230: 1167–1183



[32]Wei Y L, Li J N, Lu J, Tang Z L, Pu D C, Chai Y R. Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis. Mol Biol Rep, 2007, 34: 105–120



[33]Akhov L, Ashe P, Tan Y, Datla R, Selvaraj G. Proanthocyanidin biosynthesis in the seed coat of yellow-seeded, canola quality Brassica napus YN01-429 is constrained at the committed step catalyzed by dihydroflavonol 4-reductase. Botany, 2009, 87: 616–625



[34]Chai Y R, Lei B, Huang H L, Li J N, Yin J M, Tang Z L, Wang R, Chen L. TRANSPARENT TESTA12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait. Mol Genet Genom, 2009, 281: 109–123



[35]Lotz T, Snowdon R, Horn R, Dewal G, Weisshaar B, Friedt W, Caboche M, Chalhoub B. Molecular Analysis of Arabidopsis thaliana tt-genes in Brassica napus. In: Proceedings of the 11th International Rapeseed Congress, 2003. pp 109–111



[36]严明理, 刘显军, 刘忠松, 官春云, 袁谋志, 熊兴华. 芥菜型油菜4-二氢黄酮醇还原酶基因的克隆和表达分析. 作物学报, 2008, 34: 1–7



Yan M L, Liu X J, Liu Z S, Guan C Y, Yuan M Z, Xiong X H. Cloning and expression analysis of dihydroflavonol 4-reductase gene in Brassica juncea. Acta Agron Sin, 2008, 34: 1–7 (in Chinese with English abstract)



[37]Sharma S B, Dixon R A. Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana. Plant J, 2005, 44: 62–75



[38]Chen A H, Chai Y R, Li J N, Chen L. Molecular cloning of two genes encoding cinnamate 4-hydroxylase (C4H) from oilseed rape (Brassica napus). J Biochem Mol Biol, 2007, 40: 247–260



[39]Lu K, Chai Y R, Zhang K, Wang R, Chen L, Lei B, Lu J, Xu X F, Li J N. Cloning and characterization of phosphorus starvation inducible Brassica napus PURPLE ACID PHOSPHATASE12 gene family, and imprinting of a recently evolved MITE-minisatellite twin structure. Theor Appl Genet, 2008, 117: 963–975



[40]Xu B B, Li J N, Zhang X K, Wang R, Xie L L, Chai Y R. Cloning and molecular characterization of a functional flavonoid 3'-hydroxylase gene from Brassica napus. J Plant Physiol, 2007, 164: 350–363



[41]Zhang K, Lu K, Qu C, Liang Y, Wang R, Chai Y, Li J. Gene silencing of BnTT10 family genes causes retarded pigmentation and lignin reduction in the seed coat of Brassica napus. PloS One, 2013, 8: e61247



[42]Zhang J, Lu Y, Yuan Y, Zhang X, Geng J, Chen Y, Cloutier S, McVetty P B, Li G. Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol, 2009, 69: 553–563



[43]Li X, Chen L, Hong M, Zhang Y, Zu F, Wen J, Yi B, Ma C, Shen J, Tu J. A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. PloS one, 2012, 7: e44145



[44]Padmaja L K, Agarwal P, Gupta V, Mukhopadhyay A, Sodhi Y S, Pental D, Pradhan A K. Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea (AABB). Theor Appl Genet, 2014, 127: 339–347



[45]Stein A, Wittkop B, Liu L, Obermeier C, Friedt W, Snowdon R J. Dissection of a major QTL for seed colour and fibre content in Brassica napus reveals colocalization with candidate genes for phenylpropanoid biosynthesis and flavonoid deposition. Plant Breed, 2013, 132: 382–389



[46]Marles M, Gruber M Y, Scoles G J, Muir A D. Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus. Phytochemistry, 2003, 62: 663–672



[47]Park K I, Ishikawa N, Morita Y, Choi J D, Hoshino A, Iida S. A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. Plant J, 2007, 49: 641–654



[48]Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamure I, Kadowaki K I. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Plant J, 2007, 49: 91–102



[49]Johnson C S, Kolevski B, Smyth D R. TRANSPARENT TESTA GLABRA 2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell Online, 2002, 14: 1359–1375



[50]Dilkes B P, Spielman M, Weizbauer R, Watson B, Burkart-Waco D, Scott R J, Comai L. The maternally expressed WRKY transcription factor TTG2 controls lethality in interploidy crosses of Arabidopsis. PLoS Biol, 2008, 6: 2707–2720



[51]Ishida T, Hattori S, Sano R, Inoue K, Shirano Y, Hayashi H, Shibata D, Sato S, Kato T, Tabata S. Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation. Plant Cell, 2007, 19: 2531–2543



[52]Gonzalez A, Zhao M, Leavitt J M, Lloyd A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal, 2008, 53: 814–827



[53]Marles M, Gruber M Y. Histochemical characterisation of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. J Sci Food Agric, 2004, 84: 251–262



[54]叶小利, 李加纳, 唐章林, 梁颖, 谌利. 甘蓝型油菜种皮色泽及相关性状的研究. 作物学报, 2001, 27: 550–556



Ye X L, Li J N, Tang Z L, Liang Y, Chen L. Study on seedcoat color and related characters of Brassica napus. Acta Agron Sin, 2001, 27: 550–556 (in Chinese with English abstract)



[55]叶小利, 李学刚, 李加纳. 甘蓝型油菜种皮黑色素形成机理的研究. 作物学报, 2002, 28: 638–643



Ye X L, Li X G, Li J N. Mechanism of melanin synthesis in seed coat of Brassica napus L. Acta Agron Sin, 2002, 28: 638–643 (in Chinese with English abstract)

[1] WANG Wen-Xiang,HU Qiong,MEI De-Sheng,LI Yun-Chang,ZHOU Ri-Jin,WANG Hui,CHENG Hong-Tao,FU Li,LIU Jia*. Genetic Effects of Branch Angle Using Mixture Model of Major Gene Plus Polygene in Brassica napus L. [J]. Acta Agron Sin, 2016, 42(08): 1103-1111.
[2] LU Kun,QU Cun-Min,LI Sha,ZHAO Hui-Yan,WANG Rui,XU Xin-Fu,LIANG Ying,LI Jia-Na. Expression Analysis and eQTL Mapping of BnTT3 Gene in Brassica napus L. [J]. Acta Agron Sin, 2015, 41(11): 1758-1766.
[3] JIAO Cong-Cong,HUANG Ji-Xiang,WANG Yi-Long,ZHANG Xiao-Yu,XIONG Hua-Xin,NI Xi-Yuan,ZHAO Jian-Yi. Genetic Analysis of Yield-Associated Traits by Unconditional and Conditional QTL in Brassica napus [J]. Acta Agron Sin, 2015, 41(10): 1481-1489.
[4] TANG Min-Qiang,CHENG Xiao-Hui,TONG Chao-Bo,LIU Yue-Ying,ZHAO Chuan-Ji,DONG Cai-Hua,YU Jing-Yin,MA Xiao-Gen,HUANG Jun-Yan,LIU Sheng-Yi. Genome-wide Association Analysis of Plant Height in Rapeseed (Brassica napus) [J]. Acta Agron Sin, 2015, 41(07): 1121-1126.
[5] ZHANG Ya-Jie,LI Jing,PENG Hong-Kun,CHEN Xiu-Bin,ZHENG Hong-Yu,CHEN Sheng-Bei,LIU An-Guo,HU Li-Yong. Dynamic Simulation Model for Growth Duration of Rapeseed (Brassica napus) [J]. Acta Agron Sin, 2015, 41(05): 766-777.
[6] Lü Yan-Yan,FU San-Xiong,CHEN Song,ZHANG Wei,QI Cun-Kou*. Cloning of BnADH3 Gene from Brassica napus L. and Submergence Tolerance of BnADH3 Transgenic Arabidopsis [J]. Acta Agron Sin, 2015, 41(04): 565-573.
[7] ZHANG Wei-Xin,CAO Hong-Xin,ZHU Yan,LIU Yan,ZHANG Wen-Yu,CHEN Yu-Li,FU Kun-Ya. Morphological Structure Model of Leaf Space Based on Biomass at Pre-Overwintering Stage in Rapeseed (Brassica napus L.) Plant [J]. Acta Agron Sin, 2015, 41(02): 318-328.
[8] WEN Juan,XU Jian-Feng,LONG Yan,XU Hai-Ming,MENG Jin-Ling,WU Jian-Guo,SHI Chun-Hai. QTL Mapping and Analysis Based on Embryo and Maternal Genetic Systems for Semi-Essential Amino Acid Contents in Rapeseed (Brassica napus L.) [J]. Acta Agron Sin, 2015, 41(01): 57-65.
[9] JIN Yan,Lü Yan-Yan,FU San-Xiong,QI Cun-Kou. Inheritance of Major Gene Plus Polygene of Water-logging Tolerance in Brassica napus L. [J]. Acta Agron Sin, 2014, 40(11): 1964-1972.
[10] ZHOU Qing-Yuan,CUI Cui,YIN Tao,CHEN Dong-Liang,ZHANG Zheng-Sheng,LI Jia-Na. Genetic Analysis of Silique Length Using Mixture Model of Major Gene Plus Polygene in Brassica napus L. [J]. Acta Agron Sin, 2014, 40(08): 1493-1500.
[11] ZUO Qing-Song,YANG Hai-Yan,LENG Suo-Hu,CAO Shi,ZENG Jiang-Xue,WU Jiang-Sheng,ZHOU Guang-Sheng. Effects of Nitrogen Fertilizer on Nitrogen Accumulation, Translocation and Nitrogen Use Efficiency in Rapeseed (Brassica napus L.) [J]. Acta Agron Sin, 2014, 40(03): 511-518.
[12] HU Mao-Long,LONG Wei-Hua,GAO Jian-Qin,FU San-Xiong,CHEN Feng,ZHOU Xiao-Yin,PENG Qi,ZHANG Wei,PU Hui-Ming*,QI Cun-Kou,ZHANG Jie-Fu,CHEN Song. Development and Application of Allele-Specific PCR Markers for Imidazolinone-Resistant Gene BnALS1R in Brassica napus [J]. Acta Agron Sin, 2013, 39(10): 1711-1719.
[13] HUANG Hai-Tao,RONG Xiang-Min,SONG Hai-Xing,LIU Qiang,LIAO Qiong,LUO Ji-Peng,GU Ji-Dong,GUAN Chun-Yun,ZHANG Zhen-Hua. Effect of Nitrate Reductase (NR) Inhibitor on NR Activity in Oilseed Rape (Brassica napus L.) and Its Relation to Nitrate Content [J]. Acta Agron Sin, 2013, 39(09): 1668-1673.
[14] MA Zhen-Zhen,LI Jia-Na,Benjiamin WITTKOP,Martin FRAUEN,YAN Xing-Ying,LIU Lie-Zhao,XIAO Yang. Analysis of QTLs for Oil, Protein, Cellulose and Hemicellulose Contents of Seeds in Brassica napus L. [J]. Acta Agron Sin, 2013, 39(07): 1214-1222.
[15] XIE Xiao-Yu,ZHANG Bing,ZHANG Xia,MA Zhong-Lian,LI Jia-Na. Construction and Analysis of SSH Library in Rapeseed (Brassica napus L.) under Drought Stress [J]. Acta Agron Sin, 2013, 39(04): 744-752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!