Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (06): 838-844.doi: 10.3724/SP.J.1006.2015.00838

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and Gene Fine Mapping of White Panicle Mutant wp4 in Oryza sativa

WANG Xiao-Wen,JIANG Yu-Dong,LIAO Hong-Xiang,YANG Bo,ZOU Shuai-Yu,ZHU Xiao-Yan,HE Guang-Hua*,SANG Xian-Chun*   

  1. Rice Research Institute, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400716, China
  • Received:2014-11-24 Revised:2015-03-19 Online:2015-06-12 Published:2015-04-17
  • Contact: 桑贤春, E-mail: sangxianchun@163.com; 何光华, E-mail: hegh@swu.edu.cn E-mail:xwwang78@126.com

Abstract:

At the flowering and filling stages, rice hull appears green color and possesses photosynthetic pigment. To clear the mechanism of chloroplast development in the panicle, we identified a novel white panicle mutant from the progeny of indica restorer line Jinhui 10 with seeds treated by EMS and termed it as wp4. The wp4 displayed green spike-stalks and milk-white hulls after the heading stage. The structures of chloroplast and thylakoid were severely destroyed and the contents of photosynthetic pigment decreased extremely significantly in the mutational hulls. Compared with the wild type, the wp4 displayed yellow green leaves and contained looser stromal lamellae. And the contents of chlorophyll a, b, and carotenoid were all declined while only the changing of chlorophyll a led to the significantly different level in statistics. Except for effective panicles number and seed setting rate, other detected agronomic characteristics decreased slightly but the changing did not come up to the statistically significant difference. Genetic analysis indicated that the white panicle of wp4 was controlled by a recessive nuclear gene and which was finally mapped on chromosome 8 with 79 kb physical distances according to 1200 mutational plants derived from the F2 generation of Xinong1A/wp4. The restricted region contained 14 annotated genes based on Rice Genome Annotation Project. These results provided a foundation for gene cloning and function analysis of the WP4. Meanwhile, the traits of wp4 could be available in rice breeding as a morphological marker.

Key words: Rice (Oryza sativa)White panicle, Yellow green leaf, Gene mapping, Leaf color marker

[1]宋桂云, 徐正进, 苏慧, 王翠花, 宫雅琴, 孙海燕. 不同穗型的两个水稻品种株型的研究. 内蒙古民族大学学报(自然科学版), 2006, 21(3): 294–299

Song J Y, Xu Z J, Su H, Wang C H, Gong Y Q, Sun H Y. The study on plant shape of different panicle rice varieties. J Inner Mongolia Univ Nationalities (Nat Sci), 2006, 21(3): 294–299 (in Chinese with an English abstract)

[2]段俊, 田长恩, 梁承邺. 水稻结实过程中谷壳的作用及生理变化. 作物学报, 2000, 26: 71–76

Duan J, Tian C E, Liang C Y. Studies on effects and physiological changes of the hull on grain-filling in rice. Acta Agron Sin, 2000, 26: 71–76 (in Chinese with an English abstract)

[3]邓晓娟, 张海清, 王悦, 舒志芬, 王国槐, 王国梁. 水稻叶色突变基因研究进展. 杂交水稻, 2012, 27(5): 9–14

Deng X J, Zhang H Q, Wang Y, Shu Z F, Wang G H, Wang G L. Research advances on rice leaf-color mutant genes. Hybrid Rice, 2012, 27(5): 9–14 (in Chinese with an English abstract)

[4]Tanaka A, Tanaka R. Chlorophyll metabolism. Curr Opin Plant Biol, 2006, 9: 248–255

[5]Pogson B J, Albrecht V. Genetic dissection of chloroplast biogenesis and development: an overview. Plant Physiol, 2011, 155: 1545–1551

[6]Sanchez A C, Khush G S. Chromosomal location of some marker genes in rice using primary trisomics. J Hered, 1994, 85: 297–300

[7]Song J, Wei X J, Shao G N, Sheng Z H, Chen D B, Liu C L, Jiao G A, Xie L H, Tang S Q, Hu P S. The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions. Plant Mol Biol, 2014, 84: 301–314

[8]金怡, 刘合芹, 汪得凯, 陶跃之. 一个水稻苗期白条纹叶及抽穗期白穗突变体的鉴定和基因定位. 中国水稻科学, 2011, 25: 461–466

Jin Y, Liu H Q, Wang D K, Tao Y Z. Genetic analysis and gene mapping of a white striped leaf and white panicle mutant in rice. Chin J Rice Sci, 2011, 25(5): 461–466 (in Chinese with English abstract)

[9]Li H C, Qian Q, Wang Y, Li X B, Zhu L H, Xu J C. Characterization and mapping of a white panicle mutant gene in rice. Chin Sci Bull, 2003, 48(3): 268–270

[10]陈德西, 李婷, 曲广林, 黄文娟, 何忠全, 李仕贵. 水稻条斑和颖花异常突变体st-fon的鉴定与遗传分析. 中国水稻科学, 2012, 26: 677–685

Chen D X, Li T, Qu G L, Huang W J, He Z Q, Li S G. Characterization and genetic analysis of a streaked and abnormal glumous flower mutant st-fon. Chin J Rice Sci, 2012, 26: 677–685 (in Chinese with English abstract)

[11]Wellburn A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Plant Physiol, 1994, 144: 307–313

[12]Fang L K, Li Y F, Gong X P, Sang X C, Ling Y H, Wang X W, Cong Y F, He G H. Genetic analysis and gene mapping of a dominant presenescing leaf gene PSL3 in rice (Oryza sativa L.). Chin Sci Bull, 2010, 55: 1676–1681

[13]Richly E, Leister D. An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice. Gene, 2004, 329: 11-16

[14]Park J H, Jensen B C, Kifer C T, Parsons M. A novel nucleolar G-protein conserved in eukaryotes. J Cell Sci, 2000, 114: 173–185

[15]Honma Y, Kitamura A, Shioda R, Maruyama H, Ozaki K, Oda Y, Mini T, Jenö P, Maki Y, Yonezawa K, Hurt E, Ueno M, Uritani M, Hall M N, Ushimaru T. TOR regulates late steps of ribosome maturation in the nucleoplasm via Nog1 in response to nutrients. EMBO J, 2006, 25: 3832–3842

[16]Jensen B C, Wang Q, Kifer C T, Parsons M. The NOG1 GTP-binding protein is required for biogenesis of the 60S ribosomal subunit. J Biol Chem, 2003, 278: 32204–32211

[17]Lo KY, Li Z H, Bussiere C, Bresson S, Marcotte E M, Johnson A W. Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit. Mol Cell, 2010, 39: 196–208

[18]Jeon Y, Ahn C S, Jung H J, Kang H, Park G T, Cho Y, Hwang J, Pai H. DER containing two consecutive GTP-binding domains plays an essential role in chloroplast ribosomal RNA processing and ribosome biogenesis in higher plants. J Exp Bot, 2014, 65: 117–130

[19]郭涛, 黄宣, 黄永相, 刘永柱, 张建国, 陈志强, 王慧. 水稻叶色白化转绿及多分蘖矮秆基因hw-1(t)的图位克隆. 作物学报, 2012, 38: 23–35

Guo T, Huang X, Huang Y X, Liu Y Z, Zhang J G, Chen Z Q, Wang H. Characterizations of a mutant gene hw-1(t) for green-revertible albino, high tillering and dwarf in rice (Oryza sativa L.). Acta Agron Sin, 2012, 38: 23–35 (in Chinese with English abstract)

[20]Zhang F T, Luo X D, Hu B L, Wan Y, Xie J K. YGL138(t), encoding a putative signal recognition particle 54 kDa protein, is involved in chloroplast development of rice. Rice, 2013, 6: 7

[21]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40

[22]Chen H, Cheng Z J, Ma X D, Wu H, Liu Y L, Zhou K N, Chen Y L, Ma W W, Bi J C, Zhang X, Guo X P, Wang J L, Lei C L, Wu F Q, Lin Q B, Liu Y Q, Liu L L, Jiang L. A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice. Plant Cell Rep, 2013, 32: 1855–1867

[23]刘梦梦, 桑贤春, 凌英华, 杜鹏, 赵芳明, 杨正林, 何光华. 水稻黄绿叶基因YGL4的遗传分析和分子定位. 作物学报, 2009, 35: 1405–1409

Liu M M, Sang X C, Ling Y H, Du P, Zhao F M, Yang Z L, He G H. Genetic analysis and molecular mapping of a yellow green leaf gene (YGL4) in rice (Oryza sativa L.). Acta Agron Sin, 2009, 35: 1405–1409 (in Chinese with English abstract)

[24]杨海莲, 刘敏, 郭旻, 李荣德, 张宏根, 严长杰. 一个水稻黄绿叶突变体ygl10的遗传分析和基因定位. 中国水稻科学, 2014, 28(1): 41–48

Yang H L, Liu M, Guo M, Li R D, Zhang H G, Yan C J. Genetic analysis and position cloning of a yell-green leaf 10 (ygl10) gene, responsible for leaf color in rice. Chin J Rice Sci, 2014, 28(1): 41–48 (in Chinese with English abstract)

[25]孙小秋, 王兵, 肖云华, 万春美, 邓晓建, 王荣平. 水稻ygl98黄绿叶突变基因的精细定位与遗传分析. 作物学报, 2011, 37: 991–997

Sun X Q, Wang B, Xiao Y H, Wan C M, Deng X J, Wang R P. Genetic analysis and fine-mapping of ygl98 yellow-green leaf gene in rice. Acta Agron Sin, 2011, 37: 991–997 (in Chinese with English abstract)

[1] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[2] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[3] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[4] JIANG Cheng-Gong, SHI Hui-Min, WANG Hong-Wu, LI Kun, HUANG Chang-Ling, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, MA Qing. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize [J]. Acta Agronomica Sinica, 2021, 47(2): 285-293.
[5] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[6] HUANG Yan, HE Huan-Huan, XIE Zhi-Yao, LI Dan-Ying, ZHAO Chao-Yue, WU Xin, HUANG Fu-Deng, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a dwarf and wide-leaf mutant osdwl1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(1): 50-60.
[7] JIANG Hong-Rui, YE Ya-Feng, HE Dan, REN Yan, YANG Yang, XIE Jian, CHENG Wei-Min, TAO Liang-Zhi, ZHOU Li-Bin, WU Yue-Jin, LIU Bin-Mei. Identification and gene localization of a novel rice brittle culm mutant bc17 [J]. Acta Agronomica Sinica, 2021, 47(1): 71-79.
[8] SHI Hui-Min, JIANG Cheng-Gong, WANG Hong-Wu, MA Qing, LI Kun, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, HUANG Chang-Ling. Phenotype identification and gene mapping of defective kernel 48 mutant (dek48) in maize [J]. Acta Agronomica Sinica, 2020, 46(9): 1359-1367.
[9] TIAN Shi-Ke, QIN Xin-Er, ZHANG Wen-Liang, DONG Xue, DAI Ming-Qiu, YUE Bing. Genetic analysis and characterization of male sterile mutant mi-ms-3 in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 1991-1996.
[10] XIE Yuan-Hua,LI Feng-Fei,MA Xiao-Hui,TAN Jia,XIA Sai-Sai,SANG Xian-Chun,YANG Zheng-Lin,LING Ying-Hua. Phenotype characterization and gene mapping of the semi-outcurved leaf mutant sol1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 204-213.
[11] MO Yi,SUN Zhi-Zhong,DING Jia,YU Dong,SUN Xue-Wu,SHENG Xia-Bing,TAN Yan-Ning,YUAN Gui-Long,YUAN Ding-Yang,DUAN Mei-Juan. Genetic analysis and fine mapping of white stripe leaf mutant wsl1 in rice [J]. Acta Agronomica Sinica, 2019, 45(7): 1050-1058.
[12] Rui WANG,Yang-Song CHEN,Ming-Hao SUN,Xiu-Yan ZHANG,Yi-Cong DU,Jun ZHENG. Genetic analysis and causal gene identification of maize viviparous mutant vp-like8 [J]. Acta Agronomica Sinica, 2019, 45(5): 656-661.
[13] Li-Na SHANG,Xin-Long CHEN,Sheng-Nan MI,Gang WEI,Ling WANG,Ya-Yi ZHANG,Ting LEI,Yong-Xin LIN,Lan-Jie HUANG,Mei-Dan ZHU,Nan WANG. Phenotypic identification and gene mapping of temperature-sensitive green- revertible albino mutant tsa2 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2019, 45(5): 662-675.
[14] ZHANG Li-Sha,MI Sheng-Nan,WANG Ling,WEI Gang,ZHENG Yao-Jie,ZHOU Kai,SHANG Li-Na,ZHU Mei-Dan,WANG Nan. Physiological and biochemical analysis and gene mapping of a novel short radicle and albino mutant sra1 in rice [J]. Acta Agronomica Sinica, 2019, 45(4): 556-567.
[15] WANG Xiao-Juan,PAN Zhen-Yuan,LIU Min,LIU Zhong-Xiang,ZHOU Yu-Qian,HE Hai-Jun,QIU Fa-Zhan. Genetic analysis and molecular characterization of a new allelic mutant of silky1 gene in maize [J]. Acta Agronomica Sinica, 2019, 45(11): 1649-1655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!