Rice (Oryza sativa L.),Yellow-green leaf mutant,Genetic analysis,Fine mapping,"/> Genetic Analysis and Fine Mapping of Yellow-Green Leaf Mutant ygl209 in Rice
Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (10): 1603-1611.doi: 10.3724/SP.J.1006.2015.01603

• RESEARCH NOTES • Previous Articles     Next Articles

Genetic Analysis and Fine Mapping of Yellow-Green Leaf Mutant ygl209 in Rice

LI Guang-Xian1,YAO Fang-Yin2,HOU Heng-Jun3,SUN Zhao-Wen1,JIANG Ming-Song1,ZHU Wen-Yin1,ZHOU Xue-Biao1,*   

  1. Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China; 3 Agricultural Bureau of Rencheng Distinct, Jining 272000, China
  • Received:2015-03-21 Revised:2015-05-04 Online:2015-10-12 Published:2015-06-23

Abstract:

Etiolation mutants of rice play an important role in studies on the photosynthesis, chloroplast development, and chlorophyll metabolism in higher plants. A japonica rice mutant ygl209 with yellow-green leaf was identified from the BC4F3 progeny of the cross between the transgenic variety of Zhongguo 91 and Zhendao 88 with the latter as the recurrent parent. Compared with the wild-type parent Zhendao 88, the contents of chlorophyll a, chlorophyll b and carotenoid decreased dramatically in the mutant ygl209 at the seedling, tillering and heading stages, respectively. In particular, chlorophyll b decreased most significantly. However, there was no significant change in other agronomic traits, such as days to heading, plant height, number of effective panicles per plant, number of grains in main stem panicle, seed setting rate and 1000-grain weight. Genetic analysis showed that the yellow-green leaf trait of the ygl209 mutant was controlled by one pair of recessive nuclear genes. With F2 and F3 segregation populations derived from the cross between ygl209 and Zhendao 88, the YGL209 gene was mapped to the centromere region of chromosome 1, with a physical distance of 571.6 kb. We further analyzed the putative candidate genes in the target region through sequencing. A single base substitution (G1390C) was detected in the coding region of the LOC_Os01g31110 gene, which resulted in a missense mutation (A348G) in its encoded protein. Bioinformatic analysis predicted that the LOC_Os01g31110 gene is related to the chloroplast development in rice. Therefore, LOC_Os01g31110 is likely to be the candidate gene of YGL209.

Key words: font-size: 9pt, mso-fareast-font-family: 宋体, mso-font-kerning: 1.0pt, mso-ansi-language: EN-US, mso-fareast-language: ZH-CN, Rice (Oryza sativa L.)')">mso-bidi-language: AR-SA" lang="EN-US">Rice (Oryza sativa L.), Yellow-green leaf mutant, Genetic analysis, Fine mapping

[1]邓晓娟, 张海清, 王悦, 舒志芬, 王国槐, 王国梁. 水稻叶色突变基因研究进展. 杂交水稻, 2012, 25(5): 9–14

Deng X J, Zhang H Q, Wang Y, Shu Z F, Wang G H, Wang G L. Research advances on rice leaf-color mutant genes. Hybrid Rice, 2012, 25(5): 9–14 (in Chinese with English abstract)

[2]朱丽, 刘文真, 吴超, 栾维江, 傅亚萍, 胡国成, 斯华敏, 孙宗修. 水稻着丝粒附近一个淡绿叶突变相关基因的定位分析. 中国水稻科学, 2007, 21: 228–234

Zhu L, Liu W Z, Wu C, Luan W J, Fu Y P, Hu G C, Si H M, Sun Z X. Identification and fine mapping of a gene related to pale green leaf near centromere region in rice (Oryza sativa L.). Chin J Rice Sci, 2007, 21: 228–234 (in Chinese with English abstract)

[3]李秀兰, 孙小秋, 王平荣, 周慧, 邓晓建. 一个新的水稻黄绿叶突变体的遗传分析与基因定位. 作物学报, 2010, 36: 1050–1054

Li X L, Sun X Q, Wang P R, Zhou H, Deng X J. Genetic analysis and gene mapping of a novel yellow-green leaf mutant in rice. Acta Agron Sin, 2010, 36: 1050–1054 (in Chinese with English abstract)

[4]许凤华, 程治军, 王久林, 吴自明, 孙伟, 张欣, 雷财林, 王洁, 吴赴清, 郭秀平, 刘玲珑, 万建民. 水稻白条纹叶Gws基因的精细定位与遗传分析. 作物学报, 2010, 36: 713–720

Xu F H, Cheng Z J, Wang J L, Wu Z M, Sun W, Zhang X, Lei C L, Wang J, Wu F Q, Guo X P, Liu L L, Wan J M. Genetic analysis and fine-mapping of Gws gene using green-white-stripe rice mutant. Acta Agron Sin, 2010, 36: 713–720 (in Chinese with English abstract)

[5]张力科, 李志彬, 刘海燕, 李如海, 陈满元, 陈爱国, 钱益亮, 华泽田, 高用明, 朱苓华, 黎志康. 两个新的水稻叶色突变体形态结构与遗传定位研究. 中国农业科学, 2010, 43: 223–229

Zhang L K, Li Z B, Liu H Y, Li R H, Chen M Y, Chen A G, Qian Y L, Hua Z T, Gao Y M, Zhu L H, Li Z K. Study on morphological structure and genetic mapping of two novel leaf color mutants in rice. Sci Agric Sin, 2010, 43: 223–229 (in Chinese with English abstract)

[6]李育红, 王宝和, 戴正元, 李爱宏, 赵步洪, 左示敏, 陈忠祥, 张洪熙, 潘学彪. 水稻叶色突变体及其基因定位、克隆的研究进展. 江苏农业科学, 2011, 39(2): 34–39

Li Y H, Wang B H, Dai Z Y, Li A H, Zhao B H, Zuo S M, Chen Z X, Zhang H X, Pan X B. Advance in gene mapping and cloning of leaf color mutants in rice. Jiangsu Agric Sci, 2011, 39(2): 34–39 (in Chinese)

[7]Liu W Z, Fu Y P, Hu G C, Si H M, Zhu L, Wu C, Sun Z X. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta, 2007, 226: 785–795

[8]Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hiro-chika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463–472

[9]Zhang H T, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325–337

[10]Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J. Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994–1003

[11]Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Peak N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133

[12]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40

[13]Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805–818

[14]Jiang H W, Li M R, Liang N T, Yan H B, Wei Y B, Xu X L, Liu J, Xu Z F, Chen F, Wu G J. Molecular cloning and function analysis of the stay green gene in rice. Plant J, 2007, 52: 197–209

[15]Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J, 2009, 57: 120–131

[16]Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M. Defect in non-yellow coloring 3, an α/β hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J, 2009, 59: 940–952

[17] Zhao C F, Xu J M, Chen Y, Mao C Z, Zhang S L, Bai Y H, Jiang D, Wu P. Molecular cloning and characterization of OsCHR4, a rice chromatin-remodeling factor required for early chloroplast development in adaxial mesophyll. Planta, 2012, 36: 1165–1176

[18]Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K. A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. Plant J, 2011, 68: 1039–1050

[19]Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol, 2004, 45: 985–996

[20]Tsugane K, Maekawa M, Takagi K, Takahara H, Qian Q, Eun C H, Iida S. An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J, 2006, 45: 46–57

[21]Gothandam K M, Kim E S, Cho H, Chung Y Y. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol, 2005, 58: 421–33.

[22]Su N, Hu M L, Wu D X, Wu F Q, Fei G L, Lan Y, Chen X L, Shu X L, Zhang X, Guo X P, Cheng Z J, Lei C L, Qi C K, Jiang L, Wang H Y, Wan J M. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol, 2012, 159: 227–238

[23]Miyoshi K, Ito Y, Serizawa A, Kurata N. sHAP3 genes regulate chloroplast biogenesis in rice. Plant J, 2003, 36: 532–540

[24]孙小秋, 王兵, 肖云华, 万春美, 邓晓建, 王平荣. 水稻ygl98黄绿叶突变基因的精细定位与遗传分析. 作物学报, 2011, 37: 991–997

Sun X Q, Wang B, Xiao Y H, Wan C M, Deng X J, Wang P R. Genetic analysis and fine-mapping of ygl98 yellow-green leaf gene in rice. Acta Agron Sin, 2011, 37: 991–997

[25]Deng X J, Zhang H Q, Wang Y, He F, Liu J L, Xiao X, Shu Z F, Li W, Wang G H, Wang G L. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica). PLoS One, 2014, 9: e99564

[26]黄晓群, 王平荣, 赵海新, 邓晓建. 一个新的水稻叶绿素缺失突变基因的遗传分析和分子标记定位. 中国水稻科学, 2007, 21: 355–359

Huang X Q, Wang P R, Zhao H X, Deng X J. Genetic analysis and molecular mapping of a novel chlorophyll deficit mutant gene in rice. Chin J Rice Sci, 2007, 21: 355–359

[27]李燕群, 高家旭, 肖云华, 李秀兰, 蒲翔, 孙昌辉, 王平荣, 邓晓建. 水稻ygl80黄绿叶突变体的遗传分析与目标基因精细定位. 作物学报, 2014, 40: 644–649

Li Y Q, Gao J X, Xiao Y H, Li X L, Pu X, Sun C H, Wang P R, Deng X J. Genetic analysis and gene fine mapping of yellow-green leaf mutant ygl80 in rice. Acta Agron Sin, 2014, 40: 644–649

[28]王军, 王宝和, 周丽慧, 徐洁芬, 顾铭洪, 梁国华. 一个水稻新黄绿叶突变体基因的分子定位. 中国水稻科学, 2006, 20: 455–459

Wang J, Wang B H, Zhou L H, Xu J F, Gu M H, Liang G H. Genetic analysis and molecular mapping of a new yellow-green leaf gene ygl-2 in rice. Chin J Rice Sci, 2006, 20(5): 455–459

[29]李燕群, 蒲翔, 李春梅, 钟萍, 孙昌辉, 李秀兰, 邓晓建, 王平荣. 水稻507ys黄绿叶突变体的遗传鉴定与候选基因分析. 中国农业科学, 2014, 47: 221–229

Li Y Q, Pu X, Li C M, Zhong P, Sun C H, Li X L, Deng X J, Wang P R. Genetic identification and candidate gene analysis of yellow-green leaf mutant 507ys in rice. Sci Agric Sin, 2014, 47: 221–229

[30]杨海莲, 刘敏, 郭旻, 李荣德, 张宏根, 严长杰. 一个水稻黄绿叶突变体ygl10的遗传分析和基因定位. 中国水稻科学, 2014, 28: 41–48

Yang H L, Liu M, Guo M, Li R D, Zhang H G, Yan C J. Genetic analysis and position cloning of a yellow-green leaf ygl10 gene, responsible for leaf colour in rice. Chin J Rice Sci, 2014, 28: 41–48

[31]邓晓梅, 叶胜海, 修芬连, 周涯, 尚海漩, 纪现军, 刘继云, 陈萍萍, 金庆生, 张小明. 一个水稻黄绿叶突变性状的遗传分析及基因定位. 核农学报, 2012, 26: 203–209

Deng X M, Ye S H, Xiu F L, Zhou Y, Shang H X, Ji X J, Liu JY, Chen P P, Jin Q S, Zhang X M. Genetic analysis and gene fine mapping for mutation of yellow-green leaf in rice. Acta Agric Nucl Sin , 2012, 26: 203–209

[32]王爱菊, 姚方印, 温孚江, 朱常香, 李广贤, 杨磊, 朱其松, 张洪瑞. 利用Bt基因和Xa21基因转化获得抗螟虫、白叶枯病的转基因水稻. 作物学报, 2002, 28: 857–860

Wang A J, Yao F Y, Wen F J , Zhu C X, Li G X, Yang L, Zhu Q S, Zhang H R. Obtaining of transgenic rice plants resistant to both stem borer and bacterial blight disease from Bt and Xa21 genes transforming. Acta Agron Sin, 2002, 28: 857–860 (in Chinese with English abstract)

[33]Arnon D I. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1–15

[34]Zhang Q, Shen B Z, Dai X K, Mei M H, Saghai Maroof M A, Li Z B. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proc Natl Acad Sci USA, 1994, 91: 8675–8679

[35]McCouch S R, Teytelman L, Xu Y B, Lobos B K, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 199–207

[36]Matsumoto T, Wu J Z, Kanamori H, Katayose Y. The map-based sequence of the rice genome. Nature, 2005, 436: 793–800

[37]Pérez-Ruiz J M, Spínola M C, Kirchsteiger K, Moreno J, Sahrawy M, Cejudo F J. Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage. Plant Cell, 2006, 18: 2356–2368

[38]Ostheimer G J, Hadjivassiliou H, Kloer D P, Barkan A, Matthews B W. Structural analysis of the group II intron splicing factor CRS2 yields insights into its protein and RNA interaction surfaces. J Mol Biol, 2005: 345: 51–68

[39]Ostheimer G J, Rojas M, Hadjivassiliou H, Barkan A. Formation of the CRS2-CAF2 group II intron splicing complex is mediated by a 22-amino acid motif in the COOH-terminal region of CAF2. J Biol Chem, 2006, 281: 4732–4738
[1] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[2] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[3] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[4] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[5] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[6] HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089.
[7] WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868.
[8] JIANG Cheng-Gong, SHI Hui-Min, WANG Hong-Wu, LI Kun, HUANG Chang-Ling, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, MA Qing. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize [J]. Acta Agronomica Sinica, 2021, 47(2): 285-293.
[9] ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005.
[10] TIAN Shi-Ke, QIN Xin-Er, ZHANG Wen-Liang, DONG Xue, DAI Ming-Qiu, YUE Bing. Genetic analysis and characterization of male sterile mutant mi-ms-3 in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 1991-1996.
[11] MO Yi,SUN Zhi-Zhong,DING Jia,YU Dong,SUN Xue-Wu,SHENG Xia-Bing,TAN Yan-Ning,YUAN Gui-Long,YUAN Ding-Yang,DUAN Mei-Juan. Genetic analysis and fine mapping of white stripe leaf mutant wsl1 in rice [J]. Acta Agronomica Sinica, 2019, 45(7): 1050-1058.
[12] CUI Yue,LU Jian-Nong,SHI Yu-Zhen,YIN Xue-Gui,ZHANG Qi-Hao. Genetic analysis of plant height related traits in Ricinus communis L. with major gene plus polygenes mixed model [J]. Acta Agronomica Sinica, 2019, 45(7): 1111-1118.
[13] Pi-Biao SHI,Bing HE,Yue-Yue FEI,Jun WANG,Wei-Yi WANG,Fu-You WEI,Yuan-Da LYU,Min-Feng GU. Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa [J]. Acta Agronomica Sinica, 2019, 45(12): 1841-1850.
[14] WANG Xiao-Juan,PAN Zhen-Yuan,LIU Min,LIU Zhong-Xiang,ZHOU Yu-Qian,HE Hai-Jun,QIU Fa-Zhan. Genetic analysis and molecular characterization of a new allelic mutant of silky1 gene in maize [J]. Acta Agronomica Sinica, 2019, 45(11): 1649-1655.
[15] Zhong-Xiang LIU,Mei YANG,Peng-Cheng YIN,Yu-Qian ZHOU,Hai-Jun HE,Fa-Zhan QIU. Fine Mapping and Genetic Effect Analysis of a Major QTL qPH3.2 Associated with Plant Height in Maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2018, 44(9): 1357-1366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!