Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (12): 1828-1835.doi: 10.3724/SP.J.1006.2015.01828

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Diversity and Association Analysis of Protein Content in Weak Gluten Wheat Ningmai 9 and Its Derived Lines

JIANG Peng,ZHANG Ping-Ping,ZHANG Xu,CHEN Xiao-Ling,YAO Jin-Bao,MA Hong-Xiang*   

  1. Jiangsu Provincial Key Laboratory for Agrobiology / Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2015-03-27 Revised:2015-07-20 Online:2015-12-12 Published:2015-08-05

Abstract:

Ningmai 9 is an elite weak gluten wheat cultivar and an important breeding parent in the south area of Huai River Valley, and 15 new cultivars have been developed and released from Ningmai 9. This study aimed at dissecting the genetic mechanism and inheritance of protein content in Ningmai 9 and its derivatives. The kernel protein content (KPC) and flour protein content (FPC) of Ningmai 9 and its 117 derivatives were evaluated in the 20092010 and 20102011 growing seasons and the QTLs associated with KPC and FPC were identified by whole genomes screening with 185 SSR markers. The genetic similarity index ranged from 0.55 to 0.88 among Ningmai 9 and its derivatives. In the Neighbor-Joining cluster tree, Ningmai 9 was clustered with most first-generation lines first, then with the second-generation lines, and Yangfumai 4 of first-generation derivative was the last one to incorporate in. The first- and second-generation derivatives inherited 75.60% and 67.81% of Ningmai 9 alleles, respectively. Great variations of KPC and FPC were observed in the Ningmai 9 derived lines with the variation coefficients ranging from 5.07% to 7.28%. Six and five QTLs were identified to be associated with KPC and FPC, respectively, of which three and two were stably detected in both years. One QTL was associated with both KPC and FPC. Three stable QTLs, Xgwm539, Xwmc397, and Xwmc468, had negative effects on KPC or FPC in Ningmai 9 and might be used for quality improvement in weak-gluten wheat breeding.

Key words: Wheat, Protein content, Association analysis, Molecular markers

[1]Prasad M, Kumar N, Kulwal P, Röder M, Balyan H, Dhaliwal H, Gupta P. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet, 2003, 106: 659–667

[2]吴云鹏, 张业伦, 肖永责, 阎俊, 张勇, 张晓科, 张利民, 夏先春, 何中虎. 小麦重要品质性状的QTL定位. 中国农业科学, 2008, 41: 331–339

Wu Y P, Zhang Y L, Xiao Y G, Yan J, Zhang Y, Zhang X K, Zhang L M, Xia X C, He Z H. QTL mapping for important quality traits in common wheat. Sci Agric Sin, 2008, 41: 331–339 (in Chinese with English abstract)

[3]沈玮囡, 王竹林, 杨睿, 李美霞, 梁子英, 奚亚军, 孙风丽, 刘曙东. 波兰小麦品系XN555×普通小麦品系中13衍生重组自交系(RILs)群体中籽粒品质相关性状QTL定位. 农业生物技术学报, 2014, 22: 561–571

Shen W N, Wang Z L, Yang R, Li M X, Liang Z Y, Xi Y J, Sun F L, Liu S D. QTL analysis of grain quality related traits using recombinant inbred lines (RILs) derived from the cross of Triticum polonicum L. line XN555 × T.aestivum L. line Zhong 13. J Agric Biotechnol, 2014, 22: 561–571 (in Chinese with English abstract)

[4]Bordes J, Ravel C, Le Gouis J, Lapierre A, Charmet G, Balfourier F. Use of a global wheat core collection for association analysis of flour and dough quality traits. J Cereal Sci, 2011, 54: 137–147

[5]Jochen C R, Manje G, Hans P M, Longin C F H, Viktor K, Erhard E, Reiner B, Christof P, Tobias W. Association mapping for quality traits in soft winter wheat. Theor Appl Genet, 2011, 122: 961–970

[6]程顺和, 郭文善, 王龙俊. 中国南方小麦. 南京: 江苏科学技术出版社, 2012. p 264

Cheng S H, Guo W S, Wang L J. Wheat in Southern China. Nanjing: Jiangsu Science and Technology Publishing House, 2012. p 264 (in Chinese)

[7]姚金保, 马鸿翔, 张平平, 姚国才, 杨学明, 任丽娟, 张鹏, 周淼平. 小麦优良亲本宁麦9号的研究与利用. 核农学报, 2012, 26: 17–21

Yao J B, Ma H X, Zhang P P, Yao G C, Yang X M, Ren L J, Zhang P, Zhou M P. Research of wheat elite parent Ningmai 9 and its utilization. Acta Agric Nucl Sin, 2012, 26: 17–21 (in Chinese with English abstract)

[8]姚金保, 杨学明, 姚国才, 张艳, 顾正中, 周羊梅. 弱筋小麦品种蛋白质含量的遗传分析. 麦类作物学报, 2007, 27: 1005–1009

Yao J B, Yang X M, Yao G C, Zhang Y, Gu Z Z, Zhou Y M. Inheritance of Protein Content in Weak Gluten Wheat Cultivars. J Triticeae Crops, 2007, 27: 1005–1009 (in Chinese with English abstract)

[9]张平平, 姚金保, 马庆, 马鸿翔. 小麦碱水保持力的遗传分析. 麦类作物学报, 2009, 29: 793–797

Zhang P P, Yao J B, Ma Q, Ma H X. Inheritance of solvent retention capacity in wheat. J Triticeae Crops, 2009, 29: 793–797 (in Chinese with English abstract)

[10]姚金保, 任丽娟, 张平平, 杨学明, 马鸿翔, 姚国才, 张鹏, 周淼平. 小麦产量构成因素的双列杂交分析. 核农学报, 2011, 25: 633–638

Yao J B, Ren L J, Zhang P P, Yang X M, Ma H X, Yao G C, Zhang P, Zhou M P. Diallel analysis for yield components of wheat. J Nucl Agric Sci, 2011, 25: 633–638 (in Chinese with English abstract)

[11]姜朋, 陈小霖, 张平平, 张鹏, 姚金保, 马鸿翔. 宁麦9号对其衍生品种的遗传贡献. 作物学报, 2014, 40: 830–837

Jiang P, Chen X L, Zhang P P, Zhang P, Yao J B, Ma H X. Genetic contribution of wheat variety Ningmai 9 to its derivates. Acta Agron Sin, 2014, 40: 830–837 (in Chinese with English abstract)

[12]Andersen J R, Lubberstedt T. Functional markers in plants. Trends Plant Sci, 2003, 8: 554–560

[13]Somers D J, Isaac P, Edwards K. A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114

[14]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA 6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol, 2013, 30: 2725-2729

[15]Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633–2635

[16]庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003

Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003 (in Chinese)

[17]姚金保, 姚国才, 杨学明, 钱存鸣, 王书文. 小麦穗部性状的配合力和遗传力分析. 上海农业学报, 2004, 20: 32–36

Yao J B, Yao G C, Yang X M, Qian C M, Wang S W. Combining ability and heritability analysis of wheat spike characters. Acta Agric Shanghai, 2004, 20: 32–36 (in Chinese with English abstract)

[18]姚金保, 任丽娟, 张平平, 杨学明, 马鸿翔, 姚国才, 张鹏, 周淼平. 小麦赤霉病的抗性遗传分析. 麦类作物学报, 2011, 31: 370–375

Yao J B, Ren L J, Zhang P P, Yang X M, Ma H X, Yao G C, Zhang P, Zhou M P. Genetic analysis of resistance to Fusarium head blight in wheat. J Triticeae Crops, 2011, 31: 370–375 (in Chinese with English abstract)

[19]盖红梅, 王兰芬, 游光霞, 郝晨阳, 董玉琛, 张学勇. 基于SSR标记的小麦骨干亲本育种重要性研究. 中国农业科学, 2009, 42: 1503–1511

Ge H M, Wang L F, You G X, Hao C Y, Dong Y C, Zhang X Y. Fundamental roles of cornerstone breeding lines in wheat reflected by SSR random scanning. Sci Agric Sin, 2009, 42: 1503–1511 (in Chinese with English abstract)

[20]韩俊, 张连松, 李静婷, 石丽娟, 解超杰, 尤明山, 杨作民, 刘广田, 孙其信, 刘志勇. 小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析. 作物学报, 2009, 35: 1395–1404

Han J, Zhang L S, Li J T, Shi L J, Xie C J, You M S, Yang Z M, LiuG T, Sun Q X, Liu Z Y. Molecular dissection of core parental cross “Triumph/Yanda 1817” andits derivatives in wheat breeding program. Acta Agron Sin, 2009, 35: 1395–1404 (in Chinese with English abstract)

[21]袁园园, 王庆专, 崔法, 张景涛, 杜斌, 王洪刚. 小麦骨干亲本碧蚂4号的基因组特异位点及其在衍生后代中的传递. 作物学报, 2010, 36: 9–16

Yuan Y Y, Wang Q Z, Cui F, Zhang J T, Du B, Wang H G. Specific loci in genome of wheat milestone parent Bima 4 and their transmission in derivatives. Acta Agron Sin, 2010, 36: 9–16 (in Chinese with English abstract)

[22]李小军, 徐鑫, 刘伟华, 李秀全, 李立会. 利用SSR标记探讨骨干亲本欧柔在衍生品种的遗传. 中国农业科学, 2009, 42: 3397–3404

Li X J, Xu X, Liu W H, Li X Q, Li L H. Genetic diversity of the founder parent Orofen and its progenies revealed by SSR markers. Sci Agric Sin, 2009, 42: 3397–3404 (in Chinese with English abstract)

[23]肖永贵, 殷贵鸿, 李慧慧, 夏先春, 阎俊, 郑天存, 吉万全, 何中虎. 小麦骨干亲本“周8425B”及其衍生品种的遗传解析和抗条锈病基因定位. 中国农业科学, 2011, 44: 3919–3929

Xiao Y G, Yin G H, Li H H, Xia X C, Yan J, Zheng T C, Ji W Q, He Z H. Genetic diversity and genome-wide association analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives. Sci Agric Sin, 2011, 44: 3919–3929 (in Chinese with English abstract)

[24]Hiebert C, Thomas J, McCallum B. Locating the broad-spectrum wheat leaf rust resistance gene Lr52 (LrW) to chromosome 5B by a new cytogenetic method. Theor Appl Genet, 2005, 110: 1453–1457

[25]Kirigwi F M, Ginkel M V, Brown-Guedira G, Gill B S, Paulsen G M, Fritz A K. Markers associated with a QTL for grain yield in wheat under drought. Mol Breed, 2007, 20: 401–413

[26]Rasul G, Humphreys D G, Brule-Babel A, McCartney C A, Knox R E, DePauw R M, Somers D J. Mapping QTLs for pre-harvest sprouting traits in the spring wheat cross ‘RL4452/AC Domain’. Euphytica, 2009, 168: 363–378

[27]Munkvold J D, Tanaka J, Benscher D, Sorrells M E. Mapping quantitative trait loci for preharvest sprouting resistance in white wheat. Theor Appl Genet, 2009, 119: 1223–1235

[28]Tamburic-Ilincic L, Somers D, Fedak G, Schaafsma A. Different quantitative trait loci for Fusarium resistance in wheat seedlings and adult stage in the Wuhan/Nyubai wheat population. Euphytica, 2009, 165: 453–458

[29]Bariana H S, Bansal U K, Schmidt A, Lehmensiek A, Kaur J, Miah H, Howes N, McIntyre C L. Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica, 2010, 176: 251–260

[30]Lowe I, Jankuloski L, Chao S, Chen X M, See D, Dubcovsky J. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet, 2011, 123: 143–157

[31]Miedaner T, Würschum T, Maurer H P, Korzun V, Ebmeyer E, Reif J C. Association mapping for Fusarium head blight resistance in European soft winter wheat. Mol Breed, 2011, 28: 647–655

[32]Shukla S, Singh K, Patil R V, Kadam S, Bharti S, Prasad P, Singh N K, Khanna-Chopra R. Genomic regions associated with grain yield under drought stress in wheat (Triticum aestivum L.). Euphytica, 2015, 203: 449–467

[33]Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165–1177

[34]Andersen J R, Schrag T, Melchinger A E, Zein I, Lübberstedt T. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet, 2005, 111: 206–217

[35]Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341–356

[36]张学勇, 童依平, 游光霞, 郝晨阳, 盖红梅, 王兰芬, 李滨, 董玉琛, 李振声. 选择牵连效应分析: 发掘重要基因的新思路. 中国农业科学, 2006, 39: 1526–1535

Zhang X Y, Tong Y P, You G X, Hao C Y, Ge H M, Wang L F, Li B, Dong Y C, Li Z S. Hitchhiking effect mapping: a new approach for discovering agronomic important genes. Sci Agric Sin, 39: 1526–1535 (in Chinese with English abstract)

[37]Yu J, Pressoir G, Briggs W H, Bi I V, Masanori Y, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E. A unified mixed-method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203–208

[38]Prasad M, Varshney R K, Kumar A, Balyan H S, Sharma P C, Edwards K J, Singh H, Dhaliwal H S, Roy J K, Gupta P K. A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theor Appl Genet, 1999, 99: 341–345

[39]Olmos S, Distelfeld A, Chicaiza O, Schlatter A R, Fahima T, Echenique V, Dubcovsky J. Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet, 2003, 107: 1243–1251

[40]Li Y L, Zhou R H, Wang J, Liao X Z, Branlard G, Jia J Z. Novel and favorable QTL allele clusters for end-use quality revealed by introgression lines derived from synthetic wheat. Mol Breed, 2012, 29: 627–643

[41]Beecher F W, Mason E, Mondal S, Awika J, Hays D, Ibrahim A. Identification of quantitative trait loci (QTLs) associated with maintenance of wheat (Triticum aestivum Desf.) quality characteristics under heat stress conditions. Euphytica, 2012, 188: 361–368

[42]Lu Q X, Lillemo M, Skinnes H, He X Y, Shi J R, Ji F, Dong Y H, Bjornstad A. Anther extrusion and plant height are associated with type I resistance to Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’. Theor Appl Genet, 2013, 126: 317–334

[43]Horevaj P, Brown-Guedira G, Milus E A. Resistance in winter wheat lines to deoxynivalenol applied into florets at flowering stage and tolerance to phytotoxic effects on yield. Plant Pathol, 2012, 61: 925–933

[44]Badea A, Eudes F, Graf R J, Laroche A, Gaudet D A, Sadasivaiah R S. Phenotypic and marker-assisted evaluation of spring and winter wheat germplasm for resistance to Fusarium head blight. Euphytica, 2008, 164: 803–19

[45]Schnurbusch T, Paillard S, Schori A, Messmer M, Schachermayr G, Winzeler M, Keller B. Dissection of quantitative and durable leaf rust resistance in Swiss winter wheat reveals a major resistance QTL in the Lr34 chromosomal region. Theor Appl Genet, 2004, 108:477–484

[46]Mallard S, Gaudet D, Aldeia A, Abelard C, Besnard A L, Sourdille P, Dedryver F. Genetic analysis of durable resistance to yellow rust in bread wheat. Theor Appl Genet, 2005, 110: 1401-1409

[47]Dadkhodaie N A, Karaoglou H, Wellings C R, Park R F. Mapping genes Lr53 and Yr35 on the short arm of chromosome 6B of common wheat with microsatellite markers and studies of their association with Lr36. Theor Appl Genet, 2011, 122: 479–487

[48]Habash D Z, Bernard S, Schondelmaier J, Weyen J, Quarrie S A. The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield. Theor Appl Genet, 2007, 114: 403–419

[49]Buerstmayr M, Huber K, Heckmann J, Steiner B, Nelson J C, Buerstmayr H. Mapping of QTL for Fusarium head blight resistance and morphological and developmental traits in three backcross populations derived from Triticum dicoccum × Triticum durum. Theor Appl Genet, 2012, 125: 1751–1765

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[6] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[7] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[8] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[9] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[10] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[11] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[12] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[13] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[14] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[15] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!