Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (06): 787-794.doi: 10.3724/SP.J.1006.2016.00787

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Identification and Mapping of a Hybrid Sterility Gene between 9311 and Nipponbare

ZHANG Hong-Gen**,ZHANG Li-Jia**,SUN Yi-Biao,SI Hua,LIU Qiao-Quan,TANG Shu-Zhu*,GU Ming-Hong   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China?
  • Received:2015-12-08 Revised:2016-03-14 Online:2016-06-12 Published:2016-03-22
  • Contact: 汤述翥, E-mail: sztang@yzu.edu.cn**同等贡献(Contributed equally to this work) E-mail:zhg@yzu.edu.cn
  • Supported by:

    This study was supported by the Key Project of Chinese National Programs for Fundamental Research and Development(2011CB100101)and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Abstract:

Exploitation of subspecific heterosis is an effective method to improve rice yield by overcoming hybrid sterility between subspecies. In this study, F1 plants of the cross between Nipponbare and T9424, a line from a set of chromosome segment substitution lines with Nipponbare background as recipient and 9311 as donor, showed the decreasing spikelet and pollen fertility compared with the two parents, indicating that there was the incompatibility between the parents. Three substituted chromosome segments on chromosome 1, 4, and 5, respectively, were identified by whole genome re-sequencing of T9424. Analysis of the genotypes and spikelet fertility of plants in Nipponbare/T9424 F2 population indicated that hybrid sterility gene between T9424 and Nipponbare was located on chromosome 5. A total of 790 plants were then used for mapping the hybrid sterility gene, and the target gene was mapped to a candidate region with the physical distance of 110 kb between PSM8 and A14 on chromosome 5. The hybrid sterility gene, named S39(t) temporarily, controlled partial abortion of both pollen grains and embryo-sac of Nipponbare/T9424 F1 plants. These results are useful for deepening understanding of the phenomenon of hybrid sterility, and lay the groundwork for the gene cloning and its use in breeding.

Key words: Rice, Hybrid sterility gene, Gene mapping

[1] Sano Y. Sterility barriers between Oryza sativa and O. glaberrima. In: International Rice Research Institute, eds. Rice Genetics. Manila: International Rice Research Institute, 1986. pp 109–118
[2] Orr H A, Presgraves D C. Speciation by postzygotic isolation: forces, genes and molecules. Bioessays, 2000, 22: 1085–1094
[3] 何光华, 郑家奎, 阴国大, 杨正林. 水稻亚种间杂种配子育性的研究. 中国水稻科学, 1994, 8: 177–180
He G H, Zheng J K, Yin G D, Yang Z L. Game fertility of F1 between indica and japonica. Chin J Rice Sci, 1994, 8: 177–180(in Chinese with English abstract)
[4] 王才林, 张兆兰, 汤述翥, 施建达. 三系法籼粳亚种间杂种优势利用研究: I.籼粳交不育与细胞质雄性不育的区别及其检测. 江苏农业学报, 1992, 8(3): 1–7
Wang C L, Zhang Z L, Tang S Z, Shi J D. Exploitation of heterosis between indica and japonica by three-line method I differentiation between indica-japonica sterility and cytoplasmic male sterility. Jiangsu J Agric Sci, 1992, 8(3): 1–7(in Chinese with English abstract)
[5] Sano Y, Sano R. Variation of the intergenic spacer region of ribosomal DNA in cultivated and wild rice species. Genome, 1990, 33: 209–218
[6] Maekawa M, Inuaki T, Shinbashi N. Spikelet sterility in F1 hybrids between rice varieties Silewah and Hayakogane. Ikushugaku Zasshi, 1991, 41: 359–363
[7] 马生健, 刘耀光, 刘金祥. 水稻的杂种不育研究进展. 植物遗传资源学报, 2014, 15: 1080–1088
Ma S J, Liu Y G, Liu J X. Research progress of hybrid sterility of rice. J Plant Genet Resour, 2014, 15: 1080–1088(in Chinese with English abstract)
[8] 陆驹飞, 严长杰, 汤述翥,朱立煌, 顾铭洪. 云南水稻品种花糯广亲和性的遗传分析. 扬州大学学报(自然科学版), 1998, 1(4): 31–35
Lu J F, Yan C J, Tang S Z, Zhu L H, Gu M H. Genetic analysis of the wide compatiblity of rice variety Huanuo from Yunnan province. J Yangzhou Univ(Nat Sci), 1998, 1(4): 31–35(in Chinese with English abstract)
[9] Yao S Y, Henderson M T, Jodon N E. Cryptic structural hybridity as a probable cause of sterility in inter-varietal hybrids of cultivated rice, Oryza sativa L. Cytologia, 1958, 23: 46–55
[10] Oka H. Analysis of genes controlling F1 sterility in rice by the use of isogenic lines. Genetics, 1974, 77: 521–534
[11] Chen J J, Ding J H, Ou-Yang Y D, Du H Y, Yang J Y, Cheng K. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc Natl Acad Sci USA, 2008, 105: 11436–11441
[12] 田华. 水稻籼粳亚种间杂种胚囊不育基因S7的精细定位及细胞学研究. 南京农业大学硕士学位论文, 江苏南京, 2009
Tian H. Cytological Studies and Gene Mapping of Inter-subspecies Hybrid Embryo Sac Sterility Gene S7 of Rice (Oryza sativa L.). MSThesis of Nanjing Agricultural University, Nanjing, China, 2009(in Chinese with English abstract)
[13] Singh S P, Sundaram R M, Biradar S K, Ahmed M L, Viraktamath B C, Siddiq E A. Identification of simple sequence repeat markers for utilizing wide-compatibility genes in inter-subspecific hybrids in rice (Oryza sativa L.). Theor Appl Genet, 2006, 113: 509–517
[14] Wan J, Yamaguchi Y, Kato H, IkehashiH. Two new loci for hybrid sterility in cultivated rice (Oryza sativa L.). Theor Appl Genet, 1996, 92: 183–190
[15] Wan J, Ikehashi H. Identification of anew locus S16 causing hybrid sterility in native rice varieties (Oryza sativa L.) from Taihu Lake region and Yunnan Province, China. Breed Sci, 1995, 45: 461–470
[16] Wan J M, Ikehashi H, Sakai M, Horisue H, Imbe T. Mapping of hybrid sterility gene S17 of rice (Oryza sativa L.) by isozyme and RFLP markers. Rice Genet Newsl, 1998, 15: 151–154
[17] Zhu S, Wang C, Zheng T, Zhao Z, Ikehashi H, Wan J. A new gene located on chromosome 2 causing hybrid sterility in a remote cross of rice. Plant Breed, 2005, 124: 440–445
[18] Zhu S S, Jiang L, Wang C M, Zhai H Q, Li D T, Wan J M. The origin of weedy rice Ludao in China deduced by genome wide analysis of its hybrid sterility genes. Breed Sci, 2005, 55: 409–414
[19] Zhao Z G, Jiang L , Zhang W W, Yu C Y, Zhu S S, Xie K, Tian H, Liu LL, Ikehashi H, Wan J M. Fine mapping of S31, a gene responsible for hybrid embryo-sac abortion in rice (Oryza sativa L.). Planta, 2007, 226: 1087–1096
[20] Li D T, Chen L M, Ling J, Zhu S S, Zhao Z G, Liu S J, Su N, Zhai H Q, Ikehashi H, Wan J M. Fine mapping of S32(t), a new gene causing hybrid embryo sac sterility in a Chinese landrace rice (Oryza sativa L.). Theor Appl Genet, 2007, 114: 515–524
[21] Chen M, Zhao Z, Jiang L, Wan J. A new gene controlling hybrid sterility in rice (Oryza sativa L.). Euphytica, 2012, 184: 15–22
[22] 张桂权, 卢永根. 栽培稻(Oryza sativa)杂种不育性的遗传研究: I.等基因F1不育系杂种不育性的双列分析. 中国水稻科学, 1989, 3: 97–101
Zhang G Q, Lu Y G. Genetic studies on the hybrid sterility in cultivated rice (Oryza sativa): I. Diallel analysis of the hybrid sterility among isogenic F1 sterile lines. Chin J Rice Sci, 1989, 3: 97–101 (in Chinese with English abstract)
[23] 张桂权, 卢永根.栽培稻杂种不育性的遗传研究II. F1花粉不育性的基因模式. 遗传学报, 1993, 20: 541–551
Zhang G Q, Lu Y G. Genetic studies on the hybrid sterility in cultivated rice (Oryza sativa): II. A genic model for F1 pollen sterility. Acta Genet Sin, 1993, 20: 222–228 (in Chinese with English abstract)
[24] 张桂权, 卢永根, 张华, 杨进昌, 刘桂富. 栽培稻(Oryza sativa)杂种不育性的遗传研究: IV. F1花粉不育性的基因型遗传.遗传学报, 1994, 21: 34–41
Zhang G Q, Lu Y G, Zhang H, Yang J C, Liu G F. Genetic studies on the hybrid sterility in cultivated rice (Oryza sativa): IV. Genotypes for F1 pollen sterility. Acta Genet Sin, 1994, 21: 34–41 (in Chinese with English abstract)
[25] 夏继星. 水稻矮化突变体的分子遗传学分析和杂种不育基因S20的图位克隆. 华南农业大学博士学位论文, 广东广州, 2008
Xia J X. Genetic Analysis of a Rice Dwarf Mutant Z110-6 and Molecular Cloning of S20 for Hybrid Male Sterility in Rice. PhD Dissertation of South China Agricultural University, Guangzhou, China, 2008(in Chinese with English abstract)
[26] Takahiko K, Atsushi Y, Nori K. Hybrid male sterility in rice is due to epistatic interactions with a pollen killer locus. Genetics, 2011, 189: 1083–1092
[27] Win K T, Kubo T, Miyazaki Y, Doi K,YamagataY,YoshimuraA. Identification of two loci causing F1 pollen sterility in inter-and intraspecific crosses of rice. Breed Sci, 2009, 59: 411–418
[28] Long Y M, Zhao L F, Niu B X, Su J, Wu H, Chen Y L, Zhang Q Y, Guo J X, Zhuang C X, Mei M T, Xia J X, Wang L, Wu H B, Liu Y G. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci USA, 2008, 105: 18871–18876
[29] Yamagata Y, Yamamoto E, Aya K, Win K T, Doi K, Sobrizal, Ito T, Kanamori H, Wu J Z, Matsumoto T, Matsuoka M, Ashikari M, Yoshimura A. Mitochondrial gene in the nuclear genome induces reproductive barrier in rice.Proc Natl Acad Sci USA, 2010, 107: 1494–1499
[30] Mizuta Y, Harushima Y, Kurata N. Rice pollen hybrid incompatibility caused by reciprocal gene loss of duplicated genes.Proc Natl Acad Sci USA, 2010, 107: 20417–20422
[31] Sano Y, Sano R. Variation of the intergenic spacer region of ribosomal DNA in cultivated and wild rice species. Genome, 1990, 33: 209–218
[32] Koide Y, Onishi K, Nishimoto D, Baruah A R, Kanazawa A, Sano Y. Sex-independent transmission ratio distortion system responsible for reproductive barriers between Asian and African rice species. NewPhytol, 2008, 179: 888–900
[33] Sano Y, Sano R, Eiguchi M, Hirano H Y. Gamete eliminator adjacent to the wx locus as recealed by pollen analysis in rice. J Hered, 1994, 85: 310–312
[34] Sano Y. Genetic comparisons of chromosome 6 between wild and cultivated rice. Jpn J Breed, 1992, 42: 561–572
[35] Zhang C Q, Hu B, Zhu K Z, Zhang H, Leng Y L, Tang S Z, Gu M H, Liu Q Q. QTL mapping for rice RVA properties using high-throughput re-sequenced chromosome segment substitution lines. Rice Sci, 2013, 20: 407–414
[36] 赵世绪, 杜中, 凌祖铭. 用子房整体透明法和微分干涉差显微镜研究水稻的胚胎发育. 遗传, 1993, 15: 33–33
Zhao S X, Du Z, Ling Z M. The use of a whole clearing technique and differential interference contrast microscope for study on embryology of rice. Hereditas(Beijing), 1993, 15: 33–33(in Chinese)
[37] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acid Res, 1980, 8: 4321–4325
[38] 李文涛, 曾瑞珍, 张泽民, 丁效华, 张桂权. 水稻F1花粉不育基因座S-b的精细定位. 科学通报, 2006, 51:404–408
Li W T, Zeng R Z, Zhang Z M, Ding X H, Zhang G Q. Fine mapping of F1 pollen sterility lociS-b in rice. Chin Sci Bull, 2006, 51: 404–408(in Chinese)
[39] Kubo T, Yoshimura A, Kurata N. Hybrid male sterility in rice is due to epistatic interactions with a pollen killer locus. Genetics, 2011, 18:1083–1092
[40] Wang G W, He Y Q, Xu C G, Zhang Q. Fine mapping of f5-Du, a gene conferring wide-compatibility for pollen fertility in inter-subspecific hybrids of rice (Oryza sativa L.). Theor Appl Genet, 2006, 112: 382–387
[41] Ikehashi H, Araki H. Varietal screening of compatibility types revealed in F1 fertility of distant crosses in rice. Ikushugaku Zasshi, 1984, 34: 304–313
[42] Zhang H, Zhao Q, Sun Z Z, Zhang C Q, Feng Q, Tang S Z, Liang G H, Gu M H, Han B, Liu Q Q. Development and high-throughput genotyping of substitution lines carrying the chromosome segments of indica 9311 in the background of japonica Nipponbare. J Genet Genomics, 2011,38: 603–611
[43] Kitamura E. Studies on cytoplasmic sterility of hybrids in distantly related: varieties of rice (Oryza sativa L.). Jpn J Breed, 1962,12: 81–84

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[15] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!