Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (07): 957-965.doi: 10.3724/SP.J.1006.2016.00945

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Morphological Characterization and Fine Mapping of Zebra Leaf Mutant zebra1349 in Rice (Oryza sativa L.)

GUO Guo-Qiang1,2,3,SUN Xue-Wu2,SUN Ping-Yong2,YIN Jian-Ying3,HE Qiang2,YUAN Ding-Yang2,*,DENG Hua-Feng1,2,*,YUAN Long-Ping1,2,*   

  1. 1 College of Agronomy, Hunan Agricultural University, Changsha 410128, China; 2 State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; 3 Hengyang Agricultural Science Research Institute, Hengyang 421001, China
  • Received:2015-12-28 Revised:2016-03-14 Online:2016-07-12 Published:2016-03-28
  • Contact: 袁隆平, E-mail: lpyuan@hhrrc.ac.cn, Tel: 0731-89733455; 邓华凤, E-mail: dhf@hhrrc.ac.cn; 袁定阳, E-mail: yuandingyang@hhrrc.ac.cn E-mail:hnggq2008@163.com
  • Supported by:

    The study was supported by the grants from National High-tech R&D Program of China (863 Program)(2011AA10A101) and the Key Project Funded by the Hengyang Science And Technology Bureau (2011KZ15).

Abstract:

A new zebra leaf mutant zebra1349 was attained in a restorer line crossing population of [R128//(R318/R1025) F1] F6 in Hengyang Agricultural Science Research Institute. This mutant showed normal green leaves at seedlings stage, but a zebra leaf phenotype with green-yellow bands in penpendicular to leaf vein appeared at five days after transplanting, which was most obvious at sixth-leaf stage, and recovered normal green leaves around 30 days (ninth-leaf stage) after transplanting. Until the mature stage, the zebra1349 mutant showed insignificant difference with the wild type in major agronomic traits. The contents of total chlorophyll, chlorophyll a, chlorophyll b and carotenoid in yellow parts of the mutant leaf at sixth-leaf stage decreased by 55.86%, 61.02%, 39.34% and 47.03%, respectively. Transmission Electron Microscopic (TEM) results indicated that the chloroplast of the mutant yellow leaf showed a serious thylakoid membrane degradation and decomposition, and the number of thylakoid grana lamella decreased significantly with larger gap and looser arrangement. Genetic analysis using F1 and F2 of the reciprocal crosses between zebra1349 and normal green rice varieties revealed that the zebra-leaf trait was controlled by one pair of recessive nuclear genes. With 1192 recessive plants in a F2 population from the cross between zebra1349 mutant and normal green variety 02428, the ZEBRA1349 gene was finely mapped between two InDel markers indel39 and indel44 on chromosome 12 with a genetic distance of 0.04 cM and 0.17 cM respectively, and the physical distance was 89 kb based on comparing with the reference genome of Japonica rice Nipponbare. These results provide a foundation for further map-based cloning of ZEBRA1349 and molecular marker-assisted breeding.

Key words: Rice (Oryza sativa L.), Zebra leaf mutant, Chloroplast, Gene fine mapping

[1]Awan M A, Konzak C F, Rutger J N, Nilan R A. Mutagenic effects of sodium azide in rice. Crop Sci, 1980, 20: 663−668
[2]黄晓群, 赵海新, 董春林, 孙业盈, 王平荣, 邓晓建. 水稻叶绿素合成缺陷突变体及其生物学研究进展. 西北植物学报, 2005, 25: 1685−1691
Huang X Q, Zhao H X, Dong C L, Sun Y Y, Wang P R, Deng X J. Chlorophyll-deficit rice mutants and their research advances in biology. Acta Bot Boreali-Occident Sin, 2005, 25: 1685−1691 (in Chinese with English abstract)
[3]Fambrini M, Castagna A, Dalla Vecchia F, Degl'innocenti E, Ranieri A, Vernieri P, Pardossi A, Guidi L, Rascio N, Pugliesi C. Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PSII activity and low endogenous level of abscisic acid. Plant Sci, 2004, 167: 79−89
[4]Parks B M, Quail P H. Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biologysynthesis. Plant Cell, 1991, 3: 1177−1186
[5]Agrawal G K, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H. Screening of the rice viviparous mutants generated by endogenous retrotransposon tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol, 2001, 125: 1248−1257
[6]Stern D B, Hanson M R, Barkan A. Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci, 2004, 9: 293−301
[7]沈圣泉, 舒庆尧, 吴殿星, 陈善福, 夏英武. 白化转绿型水稻三系不育系白丰A的选育. 杂交水稻, 2005, 20(5): 10−11
Shen S Q, Shu Q Y, Wu D X, Chen S F, Xia Y W. Breeding of new rice CMS line Baifeng A with a green-revertible albino leaf color marker. Hybrid Rice, 2005, 20(5): 10−11 (in Chinese with English abstract)
[8]邓晓娟, 张海清, 王悦, 舒志芬, 王国槐, 王国梁. 水稻叶色突变基因研究进展. 杂交水稻, 2012, 27(5): 9−14
Deng X J, Zhang H Q, Wang Y, Shu Z F, Wang G H, Wang G L. Research advances on rice leaf-color mutant genes. Hybrid Rice, 2012, 27(5): 9−14 (in Chinese with English abstract)
[9]谭炎宁, 孙学武, 袁定阳, 孙志忠, 余东, 何强, 段美娟, 邓华凤, 袁隆平. 水稻单叶独立转绿型黄化突变体grc2的鉴定与基因精细定位. 作物学报, 2015, 41: 831−837
Tan Y N, Sun X W, Yuan D Y, Sun Z Z, Yu D, He Q, Duan M J, Deng H F, Yuan L P. Identification and fine mapping of green-revertible chlorina gene grc2 in rice (Oryza sativa L.). Acta Agron Sin, 2015, 41: 831−837 (in Chinese with English abstract)
[10]钱前, 朱旭东, 曾大力, 张小惠, 严学强, 熊振民. 细胞质基因控制的新特异材料白绿苗的研究. 作物品种资源, 1996, (4): 11−12
Qian Q, Zhu X D, Zeng D L, Zhang X H, Yan X Q, Xiong Z M. The study on a new special material, white-green rice which controlled by plasma gene. J Crop Resour, 1996, (4): 11−12 (in Chinese)
[11]李贤勇, 王楚桃, 李顺武, 何永歆, 陈世全. 一个水稻高叶绿素含量基因的发现. 西南农业学报, 2002, 15(4): 122−123
Li X Y, Wang C T, Li S W, He Y Y, Chen S Q. The discovery of a high chlorophyll content gene in rice. Southwest China J Agric Sci, 2002, 15(4): 122−123 (in Chinese)
[12]Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463−472
[13]Zhang H T, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice chlorina-1 and chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325−337
[14]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29−40
[15]Lee S, Kim J H, Yoo E S, Lee C H, Hirohika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805−818
[16]Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol, 2004, 45: 985−996
[17]Yoo S C, Cho S H, Sugimoto H, Li J, Kusumi K, Koh H J, Koh I, Paek N C. Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol, 2009, 150: 388−401
[18]Gothandam K M, Kim E S, Cho H J, Chung Y Y. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol, 2005, 58: 421−433
[19]Park S Y, Yu J W, Park J S, Li J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J, Jeon J S, Park Y I, Paek N C. The senescence-induced stay green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649−1664
[20]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362−1375
[21]Yutaka S, Ryouhei M, Susumu K, Minoru N, Ayumi T, Makoto K. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J, 2009, 57: 120−131
[22]Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J. Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994−1003
[23]Lichtenthaler H K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148: 350–382
[24]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4326
[25]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832
[26]Iwata N, Omura T, Sato H. Linkage studies in rice (Oryza sativa L.) on some mutants for physiological leaf spots. Fac Agr Kushu Univ, 1978, 22: 243–251
[27]Wang Q S, S C, Ling Y H, Zhao F M, Yang Z L, Li Y F, He G H. Genetic analysis and molecular mapping of a novel gene for zebra mutation in rice (Oryza sativa L.). J Genet Genomics, 2009, 36: 679–684
[28]李燕群,钟萍,高志艳,朱柏羊,陈丹,孙昌辉,王平荣,邓晓建. 水稻斑马叶突变体zebra524的表型鉴定及候选基因分析. 中国农业科学, 2014, 47: 2907–2915
Li Y Q, Zhong P, Gao Z Y, Zhu B Y, Chen D, Sun C H, Wang P R, Deng X J. Morphological characterization and candidate gene analysis of zebra leaf mutant zebra524 in rice. Sci Agric Sin, 2014, 47: 2907–2915
[29]Li J J, Pandeya D, Nath K, Zulfugarov I S, Yoo S C, Zhang H T, Yoo J H, Cho S H, Koh H Jon, Kim D S, Seo H S, Kang B C, Lee C H, Paek N C. ZEBRA-NECROSIS, a thylakoid-bound protein, is critical for the photoprotection of developing chloroplasts during early leaf development. Plant J, 2010, 62: 713–725
[30]Chai C L, Fang J, Liu Y, Tong H N, Gong Y Q, Wang Y Q, Liu M, Wang Y P, Qian Q, Cheng Z K, Chu C C. ZEBRA2, encoding a carotenoid isomerase, is involved in photo protection in rice. Plant Mol Biol, 2011, 75: 211–221
[31]Mao D H, Yu H H, Liu T M, Yang G Y, Xing Y Z. Two complementary recessive genes in duplicated segments control etiolation in rice. Theor Appl Genet, 2011, 122(2): 373–383
[32]Dong Y J, Lin D Z, Mei J, Su Q Q, Zhang J H, Ye S H, Zhang X M. Genetic analysis and molecular mapping of a thermo-sensitive chlorosis mutant in rice. Mol Plant Breed, 2013, 11: 1–7
[33]Shi J Q, Wang Y Q, Guo S, Ma L, Wang Z W, Zhu X Y, Sang X C, Ling Y H, Wang N, Zhao F M, He G H. Molecular mapping and candidate gene analysis of a yellow-green leaf 6 (ygl6). Crop Sci, 2014, 55: 669-680
[34]Kusumi K, Chono Y, Shimada H, Gotoh E, Tsuyama M, Iba K. Chloroplast biogenesis during the early stage of leaf development in rice. Plant Biotechnol, 2010, 27: 85–90
[35]Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Ret M L, Martin-Magniette M L, Mireau H, Peeters N, Renou J P, Szurek Boris, Taconnat L, Small I. Genome-wide analysis of arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell, 2004, 16: 2089–2103
[36]Su N, Hu M L, Wu D X, Wu F Q, Fei G L, Lan Y, Chen X L, Shu X L,Zhang X, Guo X P, Cheng Z J, Lei C L, Qi C K, Jiang L, Wang H Y, Wan J M. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol, 2012, 159: 227–238
[37]舒庆尧,夏英武,左晓旭,刘贵付. 二系杂交水稻制繁种中利用标记辅助去杂技术. 浙江农业大学学报, 1996, 22(1): 56–60
Shu Q Y, Xia Y W, Zuo X X, Liu G F. Maker-assisted elimination of contamination on two-line hybrid rice seed production and multiplication. J Zhejiang Agric Univ, 1996, 22(1): 56–60 (in Chinese)

[1] DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885.
[2] Li-Na SHANG,Xin-Long CHEN,Sheng-Nan MI,Gang WEI,Ling WANG,Ya-Yi ZHANG,Ting LEI,Yong-Xin LIN,Lan-Jie HUANG,Mei-Dan ZHU,Nan WANG. Phenotypic identification and gene mapping of temperature-sensitive green- revertible albino mutant tsa2 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2019, 45(5): 662-675.
[3] ZHAI Yu-Shan,ZHAO He,ZHANG Hai,DENG Yu-Qing,CHENG Guang-Yuan,YANG Zong-Tao,WANG Tong,PENG Lei,XU Qian,DONG Meng,XU Jing-Sheng. Cloning of NAD(P)H complex O subunit gene and its interaction with VPg of Sugarcane mosaic virus [J]. Acta Agronomica Sinica, 2019, 45(10): 1478-1487.
[4] Ya-Jiao CHENG,Yuan-Fang FAN,Jun-Xu CHEN,Zhong-Lin WANG,Ting-Ting TAN,Jia-Feng LI,Sheng-Lan LI,Feng YANG,Wen-Yu YANG. Effects of Light Intensity on Photosynthetic Characteristics and Assimilates of Soybean Leaf [J]. Acta Agronomica Sinica, 2018, 44(12): 1867-1874.
[5] Jun-Qiong SHI, Ya-Qin WANG, Tian-Quan ZHANG, Ling MA, Guang-Hua HE. Expression Pattern and Protein Localization of a Yellow-Green Leaf 6 (YGL6) Gene in Rice (Oryza sativa) [J]. Acta Agronomica Sinica, 2018, 44(05): 650-656.
[6] LIU Hong-Yan, ZHOU Fang, LI Jun, YANG Min-Min, ZHOU Ting, HAO Guo-Cun,ZHAO Ying-Zhong . Anatomical Structure and Photosynthetic Characteristics of a Yellow Leaf Mutant YL1 in Sesame (Sesamum indicum L.) [J]. Acta Agron Sin, 2017, 43(12): 1856-1863.
[7] FAN Yuan-Fang,YANG Feng*,LIU Qin-Lin,CHEN Jun-Xu,WANG Rui,LUO Shi-Ling,YANG Wen-Yu*. Effects of Shading on Leaf Structure and Photosynthetic Fluorescence Characteristics of Soybean seedlings in Maize-Soybean Relay Intercropping System [J]. Acta Agron Sin, 2017, 43(02): 277-285.
[8] LIU Yu-Long, LIU Feng, ZHOU Kun-Neng, SU Xiao-Mei, FANG Xian-Wen, ZHANG Yun-Hui, BAO Yi-Qun. Phenotypic Characterization and Gene Mapping of a Thermo-sensitive AlbinoLeaf Mutant tsa1 in Rice [J]. Acta Agron Sin, 2016, 42(12): 1754-1763.
[9] TAN Yan-Ning,SUN Xue-Wu,YUAN Ding-Yang,SUN Zhi-Zhong,YU Dong,HE Qiang,DUAN Mei-Juan,DENG Hua-Feng,YUAN Long-Ping. Identification and Fine Mapping of Green-Revertible Chlorina Gene grc2 in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2015, 41(06): 831-837.
[10] ZHANG Tao,SUN Yu-Ying,ZHENG Jian-Min,CHENG Zhi-Jun,JIANG Kai-Feng,YANG Li,CAO Ying-Jiang,YOU Shu-Mei,WAN Jian-Min,ZHENG Jia-Kui. Genetic Analysis and Fine Mapping of a Premature Leaf Senescence Mutant in Rice (Orzya sativa L.) [J]. Acta Agron Sin, 2014, 40(12): 2070-2080.
[11] WANG Xing-Chun,WANG Min,JI Zhi-Juan,CHEN Zhao,LIU Wen-Zhen,HAN Yuan-Huai,YANG Chang-Deng. Functional Characterization of the Glycoside Hydrolase Encoding Gene OsBE1 during Chloroplast Development in Oryza sativa [J]. Acta Agron Sin, 2014, 40(12): 2090-2097.
[12] HOU Peng-Fei,MA Jun-Qing,ZHAO Peng-Fei,ZHANG Huan-Ling,ZHAO Hui-Jie,LIU Hua-Shan,ZHAO Yi-Dan,WANG Yue-Xia. Effects of Betaine on Chloroplast Protective Enzymes and psbA Gene Expression in Wheat Seedlings under Drought Stress [J]. Acta Agron Sin, 2013, 39(07): 1319-1324.
[13] CHENG Xin,REN De-Yong,MA Jiao,ZHU Xiao-Yan,SANG Xian-Chun,LING Ying-Hua,ZHAO Fang-Ming,HE Guang-Hua*. Identification and Gene Mapping of Leaf Pale Yellow-Revertible Mutant pyr1 in Rice [J]. Acta Agron Sin, 2013, 39(06): 992-998.
[14] XIA Jia-Ping,GUO Hui-Jun,XIE Yong-Dun,ZHAO Lin-Shu,GU Jia-Yu,ZHAO Shi-Rong,LI Jun-Hui,LIU Lu-Xiang. Differential Expression of Chloroplast Genes in Chlorophyll-Deficient Wheat Mutant Mt135 Derived from Space Mutagenesis [J]. Acta Agron Sin, 2012, 38(11): 2122-2130.
[15] SUN Fu,YANG Li-Tao,XIE Xiao-Na,LIU Guang-Ling,LI Yang-Rui. Effect of Chilling Stress on Physiological Metabolism in Chloroplasts of Seedlings of Sugarcane Varieties with Different Chilling Resistance [J]. Acta Agron Sin, 2012, 38(04): 732-739.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!