Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (07): 976-983.doi: 10.3724/SP.J.1006.2016.00976

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and Gene Mapping of an Early Senescent Leaf Mutant esl6 in Oryza sativa L.

YANG Bo,XIA Min, ZHANG Xiao-Bo,WANG Xiao-Wen,ZHU Xiao-Yan,HE Pei-Long,HE Guang-Hua,SANG Xian-Chun*   

  1. Rice Research Institute of Southwest University, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Chongqing 400715, China
  • Received:2015-11-23 Revised:2016-03-14 Online:2016-07-12 Published:2016-04-13
  • Contact: 桑贤春, E-mail: sangxianchun@163.com E-mail:muchuansanshui@163.com
  • Supported by:

    This study was supported by the Fundamental Research Funds for the Central Universities (XDJK2013A023) and the National Natural Science Foundation of China (31171178).

Abstract:

As an essential process in life, natural senescenceis necessary to adapt plant to environment diversity, while earlier senescence could reduce yield per unit and cause inferior quality in crop production. Therefore, it is significant to elucidate senescence molecular mechanism in plant. Here, we reported a novel rice mutant esl6 derived from the progeny of EMS-induced restorer line Jinhui10, which senescent peculiarity was observed at the early stage of life. In detail, cultivated under the paddy field, the esl6 had no obvious difference with the wild type before the 4-leaf stage, while after that the whole leaf blade of esl6 displayed chlorosis in the tip and kept normal green in the base until the flowering stage. Subsequently, all leaf blades in the esl6 demonstrated chlorosis and senescence, still more severe at the upper position. Observation by scanning electron microscope showed that cell structures in the senescent location of esl6 leaf blade were abnormal and filled with ruptured cell membranes, enlarged vacuoles and broken organelles such as the chloroplasts containing incomplete stroma thylakoids and excessive starch grains. Meanwhile, early senescence significantly lessened photosynthetic pigment contents and photosynthetic rate. The activities of SOD, CAT, and POD raised and the contents of O2?, H2O2, and ·OH increased in the esl6 leaf tip, and all of the differences led to the extremely significant level compared with those of the wild type. Additionally, the mutational plant showed semi-dwarfism and shorter leaf blades, the first and second internodes decreased to the extremely significant level in statistics. Genetic analysis suggested that the mutational traitswere controlled by a recessive nuclear gene. The gene was finally mapped on chromosome 9 with 203 kb physical distances between Indel markers Sind09-3 and Sind09-4 on the basis of F2 generation of Xida1A/esl6. All of these provide a foundation for ESL6 cloning and function analysis and then are beneficial to ascertaining the molecular mechanism of senescence in Oryza sativa L.

Key words: Rice (Oryza sativa L.), Early senescent leaf blades, Gene mapping

[1]Kim H J, Lim P O, Hong G N. Molecular regulation of leaf senescence. Curr Opin Plant Biol, 2003, 6: 79–84
[2]Leister D. Chloroplast research in the genomic age. Trends Genet, 2003, 19: 47–56
[3]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, S N, Wang L F, Jiang L. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40
[4]Guo Y, Cai Z, Gan S. Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ, 2004, 27: 521–549
[5]Liu L, Zhou Y, Zhou G, Ye R J, Zhao L N, Li X H, Lin Y J. Identification of early senescence-associated genes in rice flag. Plant Mol Biol, 2008, 67: 37–55
[6]Li Z H, Zhao Y, Liu X C, Peng J Y, Guo H W, Luo J C. LSD 2.0: an update of the leaf senescence database. Nucl Acids Res, 2014, 42(D1): 200–205
[7]Xu X B, Bai H Q, Liu C P, Chen E Y, Chen Q F, Zhuang J Y, Shen B. Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice. PLoS One, 2014, 9(12): e114313
[8]Schippers J H M, Schmidt R, Wagstaff C, Jing H C. Living to die and dying to live: The survival strategy behind leaf senescence. Plant Physiol, 2015, 169: 914–930
[9]Abdelkhalik A F, Nomura R S K, Ikehashi H. QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.). Theor Appl Genet, 2005, 110: 1226–1235
[10]Yoo S C, Cho S H, Zhang H, Paik H C, Lee C H, Li J, Yoo J H, Lee B W, Koh H J, Seo H S, Paek N C. Quantitative trait loci associated with functional stay-green SNU-SG1 in rice. Mol Cells, 2007, 24: 83–94
[11]Wu H B, Wang B, Chen L Y , Liu L G, Chen L T. Characterization and fine mapping of the rice premature senescence mutant ospse1. Theor Appl Genet, 2013, 126: 1897–1907
[12]Li Z, Zhang Y X, Liu L, Liu Q, Bi Z Z, Yu N, Cheng S H, Cao L Y. Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice (Oryza sativa). Plant Physiol Biochem, 2014, 80: 300–307
[13]Yan W Y, Ye S H, Jin Q S, Zeng L J, Peng Y, Yan D W, Yang W B, Yang D L, He Z H, Dong Y J, Zhang X M. Characterization and mapping of a novel mutant sms1 (senescence and male sterility 1) in rice. J Genet Genomics, 2010, 37: 47–55
[14]Wang J, Wu S J, Zhou Y, Zhou L H, Xu J F, Hu J, Fang Y X, Gu M H, Liang G H. Genetic analysis and molecular mapping of a presenescing leaf gene psl1 in rice (Oryza sativa L.). Chin Sci Bull, 2006, 51: 2986–2992
[15]张涛, 孙玉莹, 郑建敏, 程治军, 蒋开锋, 杨莉, 曹应江, 游书梅, 万建民, 张建奎. 水稻早衰叶突变体PLS2的遗传分析与基因定位. 作物学报, 2014, 40: 2070–2080
Zhang T, Sun Y Y, Zheng L M, Cheng Z J, Jiang K F, Yang L, Cao Y J, You S M, Wan J M, Zhang J K. Genetic analysis and fine mapping of a premature leaf senescence mutant in rice (Orzya sativa L.). Acta Agron Sin. 2014, 40: 2070–2080 (in Chinese with an English abstract)
[16]Li F Z, Hu G C, Fu Y P, Si H M, Bai X M, Sun Z X. Genetic analysis and high-resolution mapping of a premature senescence gene Pse(t) in rice (Oryza sativa L.). Genome, 2005, 48: 738–746
[17]Fang L K, Li Y F, Gong X P, Sang X C, Ling Y H, Wang X W, Cong Y F, He G H. Genetic analysis and gene mapping of a dominant presenescing leaf gene PSL3 in rice (Oryza sativa L.). Chin Sci Bull, 2010, 55: 2517–2521
[18]Yang Y L, Rao Y C, Liu H J, Fang Y X, Dong G J, Huang L C, Leng Y J, Guo L B, Zhang G H, Hu J. Characterization and fine mapping of an early senescence mutant (es-t) in Oryza sativa L. Chin Sci Bull, 2011, 56: 2437–2443
[19]徐芳芳, 桑贤春, 任德勇, 唐彦强, 胡宏伟, 杨正林, 赵芳明, 何光华. 水稻早衰突变体esl2的遗传分析和基因定位. 作物学报, 2012, 38: 1347–1353
Xu F F, Sang X C, Ren D Y, Tang Y Q, Hu H W, Yang Z L, Zhao F M, He G H. Genetic analysis and gene mapping of early senescence leaf mutant esl2 in rice. Acta Agron Sin, 2012, 38: 1347–1353 (in Chinese with an English abstract)
[20]吕典华, 宗学凤, 王三根, 凌英华, 桑贤春, 何光华. 两个水稻叶色突变体的光合特性研究. 作物学报, 2009, 35: 2304–2308.
Lv D H, Zong X F, Wang S G, Ling Y H, Sang X C, He G H. Characteristics of photosynthesis in two leaf color mutants of rice. Acta Agron Sin, 2009, 35: 2304–2308 (in Chinese with an English abstract)
[21]Wellburn A R. The spectra determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol, 1994, 144: 307–313
[22]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832
[23]王晓雯, 蒋钰东, 廖红香, 杨波, 邹帅宇, 朱小燕, 何光华, 桑贤春. 水稻白穗突变体wp4的鉴定与基因精细定位. 作物学报, 2015, 41: 838–844.
Wang X W, Jiang Y D, Liao H X, Yang B, Zou S Y, Zhu X Y, He G H, Sang X C. Identification and gene fine mapping of white panicle mutant wp4 in Oryza sativa. Acta Agron Sin, 2015, 6: 838–844 (in Chinese with an English abstract)
[24]Panaud O, Chen X, Mccouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol General Genet, 1996, 252: 597–607
[25]Sulpice R, Pyl E T, Ishihara H, Trenkamp S, Steinfath M, Witucka-Wall H, Gibon Y, Usadel B, Poree F, Piques M C, Korff M V, Steinhauser M C, Keurentjes J J B, Guenther M, Hoehne M, Selbig J, Fernie A R, Altmann T, Stitt M. Starch as a major integrator in the regulation of plant growth. Proc Natl Acad Sci USA, 2009, 106: 10348–10353
[26]Samojedny D, Orzechowski S. New look at starch degradation in Arabidopsis thaliana L. chloroplasts. Postepy Biochem, 2007, 53:74–83
[27]Yandeau-Nelson M D, Laurens L, Shi Z, Xia H, Smith A M, Guiltinan M J. Starch-branching enzyme IIa is required for proper diurnal cycling of starch in leaves of maize. Plant Physiol, 2011, 156: 479–490
[28]Lin A H, Wang Y Q, Tang J Y, Xue P, Li C L, Liu L C, Hu B, Yang F Q, Loake G J, Chu C C. Nitric oxide and protein S-Nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol, 2012, 158: 451–464
[29]Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133
[30]Kong Z S, Li M N, Yang W Q, Xu W Y, Xue Y B. A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol, 2006, 141: 1376–1388
[31]Liang C Z, Wang Y Q, Zhu Y N, Tang J Y, Hu B, Liu L C, Ou S J, Wu H K, Sun X H, Chu J F. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA, 2014, 111: 10013–10018
[32]Sakuraba Y, Piao W, Lim J H, Han S H, Kim Y S, An G, Paek N C: Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant Cell Physiol, 2015, 56: 2325–2339
[33]Schippers J H M. Transcriptional networks in leaf senescence. Curr Opin Plant Biol, 2015, 27: 77–83
[34]Sun S J, Guo S Q, Yang X, Bao Y M, Tang H J, Sun H, Huang J, Zhang H S. Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot, 2010, 61(10): 2807–2818
[35]Hu X M, Qian Q, Xu T, Zhang Y, Dong G J, Gao T, Xie Q, Xue Y B. The U-Box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate Brassinosteroid-mediated growth in rice. PLoS Genet, 2013, 9(3): e1003391
[36]Fang H M, Meng Q L, Xu J W, Tang H J, Tang S Y, Zhang H S, Huang J. Knock-down of stress inducible OsSRFP1 encoding an E3 ubiquitin ligase with transcriptional activation activity confers abiotic stress tolerance through enhancing antioxidant protection in rice. Plant Mol Biol, 2015, 87: 441–458
[37]Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133
[38]Lepistö A, Kangasjärvi S, Luomala E M, Brader G, Sipari N, Keränen M, Keinänen M, Rintamäki E. Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis. Plant Physiol, 2009, 149: 1261–1276

[1] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[2] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[3] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[4] JIANG Cheng-Gong, SHI Hui-Min, WANG Hong-Wu, LI Kun, HUANG Chang-Ling, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, MA Qing. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize [J]. Acta Agronomica Sinica, 2021, 47(2): 285-293.
[5] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[6] HUANG Yan, HE Huan-Huan, XIE Zhi-Yao, LI Dan-Ying, ZHAO Chao-Yue, WU Xin, HUANG Fu-Deng, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a dwarf and wide-leaf mutant osdwl1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(1): 50-60.
[7] JIANG Hong-Rui, YE Ya-Feng, HE Dan, REN Yan, YANG Yang, XIE Jian, CHENG Wei-Min, TAO Liang-Zhi, ZHOU Li-Bin, WU Yue-Jin, LIU Bin-Mei. Identification and gene localization of a novel rice brittle culm mutant bc17 [J]. Acta Agronomica Sinica, 2021, 47(1): 71-79.
[8] SHI Hui-Min, JIANG Cheng-Gong, WANG Hong-Wu, MA Qing, LI Kun, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, HUANG Chang-Ling. Phenotype identification and gene mapping of defective kernel 48 mutant (dek48) in maize [J]. Acta Agronomica Sinica, 2020, 46(9): 1359-1367.
[9] TIAN Shi-Ke, QIN Xin-Er, ZHANG Wen-Liang, DONG Xue, DAI Ming-Qiu, YUE Bing. Genetic analysis and characterization of male sterile mutant mi-ms-3 in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 1991-1996.
[10] XIE Yuan-Hua,LI Feng-Fei,MA Xiao-Hui,TAN Jia,XIA Sai-Sai,SANG Xian-Chun,YANG Zheng-Lin,LING Ying-Hua. Phenotype characterization and gene mapping of the semi-outcurved leaf mutant sol1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 204-213.
[11] MO Yi,SUN Zhi-Zhong,DING Jia,YU Dong,SUN Xue-Wu,SHENG Xia-Bing,TAN Yan-Ning,YUAN Gui-Long,YUAN Ding-Yang,DUAN Mei-Juan. Genetic analysis and fine mapping of white stripe leaf mutant wsl1 in rice [J]. Acta Agronomica Sinica, 2019, 45(7): 1050-1058.
[12] Rui WANG,Yang-Song CHEN,Ming-Hao SUN,Xiu-Yan ZHANG,Yi-Cong DU,Jun ZHENG. Genetic analysis and causal gene identification of maize viviparous mutant vp-like8 [J]. Acta Agronomica Sinica, 2019, 45(5): 656-661.
[13] Li-Na SHANG,Xin-Long CHEN,Sheng-Nan MI,Gang WEI,Ling WANG,Ya-Yi ZHANG,Ting LEI,Yong-Xin LIN,Lan-Jie HUANG,Mei-Dan ZHU,Nan WANG. Phenotypic identification and gene mapping of temperature-sensitive green- revertible albino mutant tsa2 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2019, 45(5): 662-675.
[14] ZHANG Li-Sha,MI Sheng-Nan,WANG Ling,WEI Gang,ZHENG Yao-Jie,ZHOU Kai,SHANG Li-Na,ZHU Mei-Dan,WANG Nan. Physiological and biochemical analysis and gene mapping of a novel short radicle and albino mutant sra1 in rice [J]. Acta Agronomica Sinica, 2019, 45(4): 556-567.
[15] WANG Xiao-Juan,PAN Zhen-Yuan,LIU Min,LIU Zhong-Xiang,ZHOU Yu-Qian,HE Hai-Jun,QIU Fa-Zhan. Genetic analysis and molecular characterization of a new allelic mutant of silky1 gene in maize [J]. Acta Agronomica Sinica, 2019, 45(11): 1649-1655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!