[1]Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol, 2008, 59: 281–311
[2]Li J G, Li G, Wang H Y, Deng X W. Phytochrome signaling mechanisms. The Arabidopsis Book, 2011, e0148 (doi: 10.1199/tab.0148)
[3]Quail P H. Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol, 2002, 3: 85–93
[4]詹克慧, 李志勇, 侯佩, 习雨琳, 肖阳, 孟凡华, 杨建平. 利用修饰光敏色素信号途径进行品种改良的可行性. 中国农业科学, 2012, 45: 3249–3255
Zhan K H, Li Z Y, Hou P, Xi Y L, Xiao Y, Meng F H, Yang J P. A new strategy for crop improvement through modification of phytochrome signaling pathways. Sci Agric Sin, 2012, 45: 3249–3255 (in Chinese with English abstract)
[5]Briggs W R, Olney M A. Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol, 2001, 125: 85–88.
[6]Lin C T. Blue light receptors and signal transduction. Plant Cell, 2002, 14: S207–S225
[7]Ahmad M, Cashmore A R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature, 1993, 366: 162–166
[8]Cashmore A R. Cryptochromes: Enabling plants and animals to determine circadian time. Cell, 2003, 114: 537–543
[9]Lin C T, Shalitin D. Cryptochrome structure and signal transduction. Annu Rev Plant Biol, 2003, 54: 469–496
[10]Sancar A. Structure and function of DNA photolyase and cryptochrome blue light photoreceptors. Chem Revs, 2003, 103: 2203–2237
[11]Guo H, Yang H Q, Mockler T C, Lin C T. Regulation of flowering time by Arabidopsis photoreceptor. Science, 1998, 279: 1360–1363
[12]Li Q H, Yang H Q. Cryptochrome Signaling in Plants. Photochem Photobiol, 2007, 83: 94–101
[13]Shalitin D, Yang H Q, Mockler T C, Maymon M, Guo H, Whitelam G C, Lin C T. Regulation of Arabidopsis cryptochrome 2 by blue-light dependent phosphorylation. Nature, 2002, 417: 763–767
[14]Ahmad M, Jarillo J A, Cashmore A R. Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell, 1998, 10: 197–207
[15]Lin C T, Yang H Q, Guo H, Mockler T, Chen J, Cashmore A R. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci USA, 1998, 95: 2686–2690
[16]Yu X, Klejnot J, Zhao X, Shalitin D, Maymon M, Yang H Q, Lee J, Liu X, Lin C T. Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell, 2007, 19: 3146–3156
[17]Kleine T, Lockhart P, Batschauer A. An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J, 2003, 35: 93–103
[18]Selby C P, Sancar A. A cryptochrome/photolyase class of enzymes with single stranded DNA specific photolyase activity. Proc Natl Acad Sci USA, 2006, 103: 17696–17700
[19]陈福禄, 李宏宇, 林辰涛, 傅永福. 拟南芥隐花色素突变体抑制子的筛选及其表型分析. 中国农业科技导报, 2009, 11(3): 93–97
Chen F L, Li H Y, Lin C T, Fu Y F. Screening and phenotypic analysis of suppressor of cryptochromes mutant in Arabidopsis. J Agric Sci Technol, 2009, 11(3): 93–97 (in Chinese with English abstract)
[20]Immeln D, Schlesinger R, Heberle J, Kottke T. Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome. J Biol Chem, 2007, 282: 21720–21728.
[21]Imaizumi T, Kanegae T, Wada M. Cryptochrome nucleocytoplasmic distribution and gene expression are regulated by light quality in the fern Adiantum capillus-veneris. Plant Cell, 2000, 12: 81–96.
[22]Imaizumi T, Kadota A, Hasebe M, Wada M. Cryptochrome light signals control development to suppress auxin sensitivity in the moss physcomitrella patens. Plant Cell, 2002, 14: 373–386.
[23]Ninu L, Ahmad M, Miarelli C, Cashmore A R, Giuliano G. Cryptochrome 1 controls tomato development in response to blue light. Plant J, 1999, 18: 551–556
[24]Giliberto L, Perrotta P, Pallara P, Weller J L, Fraser P D, Bramlev P M, Flore A, Tavazza M, Giuliano G. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol, 2005, 137: 199–208.
[25]Chatterjee M, Sharma P, Khurana J P. Cryptochrome 1 from Brassica napus is up-regulated by blue light and controls hypocotyl/stem growth and anthocyanin accumulation. Plant Physiol, 2006, 141: 61–74
[26]Platten J D, Foo E, Elliott R C, Hecht V, Reid J B, Weller J L. Cryptochrome 1 contributes to blue-light sensing in pea. Plant Physiol, 2005, 139: 1472–1482
[27]Platten J D, Foo E, Elliott R C, Hecht V, Reid J B, Weller J L. The cryptochrome gene family in pea includes two differentially expressed CRY2 genes. Plant Mol Biol, 2005, 59: 683–696
[28]Zhang Q Z, Li H Y, Li R, Hu R B, Fan C M, Chen F L, Wang Z H, Liu X, Fu Y F, Lin C T. Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc Natl Acad Sci USA, 2008, 105: 21028–21033
[29]Meng Y Y, Li H Y, Wang Q, Liu B, Lin C T. Blue light-dependent interaction between Cryptochrome2 and CIB1 regulates transcription and leaf senescence in soybean. Plant Cell, 2013, 25: 4405–4420
[30]Hirose F, Shinomura T, Tanabata T, Shimada H, Takano M. Involvement of rice cryptochromes in de-etiolation responses and flowering. Plant Cell Physiol, 2006, 47: 915–925
[31]Zhang Y C, Gong S F, Sang F, Yang H Q. Functional and signaling mechanism analysis of rice CRYPTOCHROME 1. Plant J, 2006, 46: 971–983
[32]Toth R, Kevei E, Hall A, Millar A, J, Nagy F, Kozma-Bognar L. Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol, 2001, 127: 1607–1616
[33]Facella P, Loredana L, Carbone F, Galbraith D W, Giuliano G, Perrotta G. Diurnal and circadian rhythms in the tomato transcriptome and their modulation by cryptochrome photoreceptors. PLoS One, 2008, 3(7): e2798
[34]Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science, 2008, 322: 1535–1539
[35]Xu P, Xiang Y, Zhu H, Xu H, Zhang Z Z, Zhang C Q, Zhang L X, Ma Z Q. Wheat cryptochromes: Subcellular localization and involvement in photomorphogenesis and osmotic stress responses. Plant Physiol, 2009, 149: 760–774
[36]Barrero J M, Downie A B, Xu Q, Gubler F. A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination. Plant Cell, 2014, 26: 1094–1104.
[37]Sharma P, Chatterjee M, Burman N, Khurana J P. Cryptochrome 1 regulates growth and development in Brassica through alteration in the expression of genes involved in light, phytohormone and stress signaling. Plant Cell Environ, 2014, 37: 961–977
[38]原换换, 孙广华, 闫蕾, 郭林, 樊晓聪, 肖阳, 孟凡华, 宋梅芳, 詹克慧, 杨青华, 杨建平. 玉米ZmPP6C基因的克隆及其响应光质和胁迫处理的表达模式分析. 作物学报, 2016, 42: 170–179
Yuan H H, Sun G H, Yan L, Guo L, Fan X C, Xiao Y, Meng F H, Song M F, Zhan K H, Yang Q H, Yang J P. Molecular cloning of ZmPP6C gene and its expression patterns in response to light and stress treatments in maize (Zea mays L.). Acta Agron Sin, 2016, 42: 170–179 (in Chinese with English abstract)
[39]Rajeevan M S, Ranamukhaarachi D G, Vernon S D, Unger E R. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001, 25: 443–451
[40]Schnable J C, Springer N M, Freeling M. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci USA, 2011, 108: 4069–4074
[41]Wei F S, Nelson W, Coe E, Bharti A K, Engler F, Butler E, Kim H R, Goicoechea J L, Chen M S, Lee S, Fuks G, Villeda S H, Schroeder S, Fang Z W, McMullen M, Davis G, Bowers J E, Paterson A H, Schaeffer M, Gardiner J, Cone K, Messing J, Soderlund C, Wing R A. Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genetics, 2007, 3(7): e123
[42]Salse J, Bolot S, Throude M, Jouffe V, Benoît P, Quraishi U M, Calcagno T, Cooke R, Delseny M, Feuilleta C. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell, 2008, 20: 11–24.
[43]Ahmad M, Cashmore A R. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana. Plant J, 1997, 11: 421–427
[44]Chory J. Genetic interactions between phytochrome A, phytochrome B, cryptochrome 1 during Arabidopsis development. Plant Physiol, 1998, 118: 27–35
[45]Hennig L, Funk M, Whitelam C G, Schafer E. Functional interaction of cryptochrome 1 and phytochrome. Plant Cell, 1999, 20: 289–294
[46]Somers D E, Devlin P F, Kay S A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science, 1998, 282: 1488–1490
[47]Ahmad M, Jarillo A J, Smirnova O, Cashmore R A. The CRY1 blue light photoreceptor of Arabidopsis interacts with Phytochrome A in vitro. Mol Cell, 1998, 1: 939–948
[48]MaÂs P, Devlin F P, Panda S, Kay S A. Functional interaction of phytochrome B and cryptochrome 2. Nature, 2000, 408: 207–211
[49]Neff M M, Jarillo J A, Capel J, Tang R H, Yang H Q, Alonso J M, Ecker J R, Cashmore A R. An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature, 2001, 410: 487–490
[50]Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410: 1116–1120
[51]Pineiro R P, Coupland G. The control of flowering time and floral identity in Arabidopsis. Plant Physiol, 1998, 17: 1–8
[52]Samach A, Onouchi H, Gold S E, Ditta G S, Schwarz-Sommer Z, Yanofsky M F, Coupland G. Distinct roles of CONSTANS target genes in reproductive development in Arabidopsis. Science, 2000, 288: 1613–1616 |