Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (09): 1309-1318.doi: 10.3724/SP.J.1006.2016.01309

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping Quantitative Trait Loci for Seed Size and Shape Traits in Soybean

CHEN Qiang,YAN Long,DENG Ying-Ying,Xiao Er-ning,Liu Bing-Qiang,YANG Chun-Yan*,ZHANG Meng-Chen*   

  1. Sciences / Shijiazhuang Branch of National Soybean Improvement Center / Huanghuaihai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Shijiazhuang 050035, China
  • Received:2016-01-26 Revised:2016-05-09 Online:2016-09-12 Published:2016-06-06
  • Contact: 张孟臣, E-mail:mengchenzhang@hotmail.net; 杨春燕, E-mail: chyyang66@163.com E-mail:chenqiangwsm@163.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31471522), the Natural Science Foundation of Heibei Province (C2015301012), the National High-tech Research and Development Program (863 Torch Program) (2012AA101106), the China Agriculture Research System (CARS-004-PS06), and the National Science and Technology Major Project (2014ZX0800402B). 

Abstract:

Seed size and shape not only relate to seed yield and quality, but also affect mechanical seeding in soybean (Glycine max L.). In this study, F6:8 and F6:9 populations derived from Jidou 12 × Heidou were used to analyze the genetic character and detect quantitative trait locus (QTL) for seed length, seed width, seed thickness, seed length-to-width ratio, seed length-to-thickness ratio, and seed width-to-thickness ratio. Softwares WinQTLCart 2.5, QTLNetwork 2.1 and IciMapping 4.1 were used to identify the additive, epistatic and environmentally interacted QTLs for seed size and shape related traits. As results, the heritability of the six traits varied from 64.01% to 79.57%. A total of 38 additive QTLs were identified to be located on 12 chromosomes, with the heritability varying from 2.21% to 10.71%.Eight of them(qSL-17-1,qSL-18-1, qSW-6-1, qST-2-1, qST-6-1, qSLT-2-2, qSWT-2-1,and qSWT-20-1)were identified using three methods, simultaneously. In the meantime, seven pairs of additive × additive epistasis were detected and the heritability of epistasis pairs ranged from 0.78 to 6.20%. Additionally, the effects of QTL by environment interaction ranged from 0.0005% to 0.3900%. The QTL identified using different mapping softwares in this study could provide a reliable theoretical basis for marker-assisted selection breeding.

Key words: Soybean, Seed shape, Quantitative trait locus, Epistasis

[1] Liang H Z, Li W D, Wang H, Fang X J. Genetic effects on seed traits in soybean. Acta Genet Sin, 2005, 32: 1199–1204
[2] Wilson D O Jr. Storage of orthodox seeds. In: Basra AS , ed. Seed quality: basic mechanisms agricultural implications. New York: Food Products Press, 1995. pp 173–208
[3] Nelson R L, Wang P. Variation and evaluation of seed shape in soybean. Crop Sci, 1989, 29: 147–150
[4] Cober E R, Voldeng H D, Fregeau-Reid J A. Heritability of seed shape and seed size in soybean. Crop Sci, 1997, 37: 1767–1769
[5] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164–1171
[6] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623–630
[7] Wan X Y, Weng J F, Zhai H Q, Wang J K, Lei C L, Liu X L, Guo T, Jiang L, Su N, Wan J M. QTL analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics, 2008, 179: 2239–2252
[8] Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y, Zhang H S. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA, 2012, 109: 21534–21539
[9] Sun L J, Li X J, Fu Y C, Zhu Z F, Tan L B, Liu F X, Sun X Y, Sun X W, Sun C Q. GS6, a member of the GRAS gene family, negatively regulates grain size in rice. J Integr Plant Biol, 2013, 55: 938–949
[10] Moongkanna J, Nakasathien S, Novitzky W P, Kwanyuen P, Sinchaisri P, Srinives P. SSR markers linking to seed traits and total oil content in soybean. Thai J Agric Sci, 2011, 44: 233–241
[11] Salas P, Oyarzo-Llaipen J C, Wang D, Chase K, Mansur L. Genetic mapping of seed shape in three populations of recombinant inbred lines of soybean (Glycine max L. Merr.). Theor Appl Genet, 2006, 113: 1459–1466
[12] 刘晓芬. 大豆栽培品种群体粒形性状及百粒重的关联分析. 南京农业大学博士学位论文, 江苏南京, 2012
Liu X F. Association Analysis for Seed Shape Traits and 100-seed Weight in Soybean (Glycine max L. Merr.). PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2012 (in Chinese with English abstract)
[13] Xu Y, Li H N, Li G J, Wang X, Cheng L G, Zhang Y M. Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.). Theor Appl Genet, 2011, 122: 581–594
[14] 牛远, 徐宇, 李广军, 王云清, 刘晓芬, 李河南, 魏世平, 章元明. 大豆籽粒大小和粒形的驯化研究. 大豆科学, 2012, 31: 522–528
Niu Y, Xu Y, Li G J, Wang Y Q, Liu X F, Li H N, Wei S P, Zhang Y M. Domestication of Seed Size and Shape Traits in Soybean. Soybean Sci, 2012, 31: 522–528 (in Chinese with English abstract)
[15] 牛远, 谢芳腾, 布素红, 谢尚潜, 韩世凤, 耿青春, 刘兵, 章元明. 大豆粒形性状QTL的精细定位. 作物学报, 2013, 39: 609–616
Niu Y, Xie F T, Bu S H, Xie S Q, Han S F, Geng Q, Liu B, Zhang Y M. Fine mapping of quantitative trait loci for seed shape traits in soybean. Acta Agron Sin, 2013, 39: 609–616 (in Chinese with English abstract)
[16] Xie F T, Niu Y, Zhang J, Bu S H, Zhang H Z, Geng Q C, Feng J Y, Zhang Y M. Fine mapping of quantitative trait loci for seed size traits in soybean. Mol Breed, 2014, 34: 2165–2178
[17] Hu Z B, Zhang H R, Kan G Z, Ma D Y, Zhang D, Shi G X, Hong D L, Zhang G Z, Yu D Y. Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean (Glycine max L. Merr.). Genetica, 2013, 141: 247–254
[18] Yu S B, Li J X, Xu C G. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad SciUSA, 1997, 94: 922–931
[19] 孙亚男, 仕相林, 蒋洪蔚, 孙殿军, 辛大伟, 刘春燕, 胡国华, 陈庆山. 大豆百粒重QTL的上位效应和基因型×环境互作效应分析. 中国油料作物学报, 2013, 34: 598–603
Sun Y N, Shi X L, Jiang H W, Sun D J, Xin D W, Liu C Y, Hu G H, Chen Q S. Epistatic effects and qE interaction effects of QTLs for 100-seed weight in soybean. Chin J Oil Crop Sci, 2013, 34: 598–603 (in Chinese with English abstract)
[20] Xing Y Z, Tan Y F, Hua J P, Sun X L, Xu C G, Zhang Q F. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet, 2002, 105: 248–257
[21] Niu Y, Xu Y, Liu X F, Yang S X, Wei S P, Xie F T, Zhang Y M. Association mapping for seed size and shape traits in soybean cultivars. Mol Breed, 2013, 31: 785–794
[22] 梁慧珍, 余永亮, 杨红旗, 张海洋, 董薇, 杜华, 崔暐文, 刘学义, 方宣钧. 大豆粒形性状主效QTL环境互作和上位性检测. 中国农业科学, 2013, 46: 5081–5088
Liang H Z, Yu Y L, Yang H Q, Zhang H Y, Dong W, Du H, Cui W W, Liu X Y, Fang X J. Main, environmentally interacted and epistatic QTL for seed shape traits in soybean. Sci Agric Sin, 2013, 46: 5081–5088 (in Chinese with English abstract)
[23] 闫宁, 谢尚潜, 耿青春, 徐宇, 李广军, 刘兵, 汪霞, 李其刚, 章元明. 利用Bayes分层广义线性模型剖析大豆籽粒性状的遗传基础. 作物学报, 2013, 39: 258–268
Yan N, Xie S Q, Geng Q C, Xu Y, Li G J, Liu B, Wang X, Li Q G, Zhang Y M. Genetic basics of seed traits in soybean with bayes hierarchical gengralized linear model method. Acta Agron Sin, 2013, 39: 258–268 (in Chinese with English abstract)
[24] 苏成付, 赵团结, 盖钧镒. 不同统计遗传模型QTL定位方法应用效果的模拟比较. 作物学报, 2010, 36: 1100–1107
Su C F, Zhao T J, Gai J Y. Simulation comparisons of effectiveness among QTL mapping procedures of different statistical genetic models. Acta Agron Sin, 2010, 36: 1100–1107 (in Chinese with English abstract)
[25] 李杰勤, 张启军, 叶少平, 赵兵, 梁永书, 彭勇, 吴发强, 王世全, 李平. 四种不同QTL作图方法的比较研究. 作物学报, 2005, 31: 1473–1477
Li J Q, Zhang Q J, Ye S P, Zhao B, Liang Y S, Peng Y, Wu F Q, Wang S Q, Li P. Comparative research on four mapping methods of QTLs. Acta Agron Sin, 2005, 31:1473–1477 (in Chinese with English abstract)
[26] Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. North Carolina State University, Raleigh, NC, USA, 2001–2006
[27] Yang J, Zhu J, Williams R W. Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 2007, 23: 1527–1536
[28] Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374
[29] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269–283
[30] Nyquist W E, Baker R J. Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci, 1991, 10: 235–322
[31] Lu W G, Wen Z X, Li H C, Yuan D H, Li J Y, Zhang H. Identification of the quantitative trait loci (QTL) underlying water soluble prote incontent in soybean. Theor Appl Genet, 2013, 126: 425–33
[32] 陈强. 大豆籽粒相关性状QTL定位分析. 河北科技师范学院硕士学位论文, 河北秦皇岛, 2014
Chen Q. QTL Mapping for seed related traits in soybean (Glycine max L. Merr.). MS Dissertation of Hebei Normal University of Science & Technology, Qinhuangdao, China, 2014 (in Chinese with English abstract)
[33] 雷雅坤, 闫龙, 杨春燕,.宋晓坤, 张孟臣, 黄占景. 大豆公共遗传图谱C1连锁群SSR标记空白区段的填补. 华北农学报, 2012, 27(6): 5–10
Lei Y K, Yan L, Yang C Y, Song X K, Zhang M C, Huang Z J. Complete the blank section with SSR markers on linkage group C1 of public genetic map in soybean. Acta Agric Boreali-Sin, 2012, 27(6): 5–10 (in Chinese with English abstract)
[34] Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer V2.5. Department of Statistics. North Carolina : North Carolina State University, 2007
[35] Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects. Theor Appl Genet, 2005, 110: 1268-1274
[36] Yang J, Hu C C, Hu H, Yu R D, Xia Z, Ye X Z, Zhu J. QTL Network: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008, 24: 721–723
[37] 张红梅, 李海朝, 文自翔, 顾和平, 袁星星, 陈华涛, 崔晓艳, 陈新, 卢为国. 大豆籽粒维生素E含量的QTL分析. 作物学报, 2015, 41: 187–196
Zhang H M, Li H C, Wen Z X, Gu H P, Yuan X X, Chen H T, Cui X Y, Chen X, Lu W G. Identification of QTL associated with vitamin e content in soybean seeds. Acta Agron Sin, 2015, 41: 187–196 (in Chinese with English abstract)
[38] McCouch S, Chen X, Panaud O, Temnykh S, Xu Y, Cho Y G, Huang N, Ishii T, Blair M. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, 1997, 35: 89–99
[39] Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122-128
[40] Mansur L M, Orf J, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomictraits using recombi-nant inbred lines of soybean. Crop Sci, 1996, 36: 1327–1336
[41] 杜景红, 樊叶杨, 吴季荣, 庄杰云. 水稻第6染色体短臂产量性状QTL簇的分解. 中国农业科学, 2008, 41: 939–945
Du J H, Fan Y Y, Wu J R, Zhuang J Y. Dissection of QTLs for yield traits on the short arm of rice chromosome 6. Sci Agric Sin 2008, 41: 939–945 (in Chinese with English abstract)

[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[5] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[6] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[7] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[8] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[9] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[10] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[11] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[12] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[13] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[14] YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702.
[15] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!