Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (12): 1827-1833.doi: 10.3724/SP.J.1006.2016.01827

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of SA, MeJA, and ACC on Leaf Cuticular Wax Constituents, Structure and Permeability in Brassica napus

LI Shuai,ZHAO Qiu-Ling,PENG Yang,XU Yi,LI Jia-Na,NI Yu*   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
  • Received:2016-03-29 Revised:2016-07-11 Online:2016-12-12 Published:2016-08-01
  • Contact: 倪郁, E-mail: nmniyu@126.com E-mail:1099908163@qq.com
  • Supported by:

    This study was supported by the Fundamental Research Funds for the Central Universities (XDJK2014B037), the Chongqing basic and advanced research project (cstc2016jcyjA0170), and the National Natural Science Foundation of China (31000122).

Abstract:

Cuticular waxes are related to plant adaptation to environment stress. In the current study, Brassica napus cv. Zhongshuang 11 grown in the soil treated with adding solutions of SA (200 μmol L–1), MeJA (100 μmol L–1), and ACC (200 μmol L–1) wax, were sampled at the five-leaf stage to clarify the effects of SA, MeJA and ETH on adjusting plant cuticular wax deposition. The leaves were used to analyze the amounts of total cuticular wax and wax constituents, wax crystal structure, and cuticular permeability. The amounts of n-alkanes, secondary alcohols, ketones, aldehydes and total cuticular waxes increased significantly when compared with the control at seven days after MeJA treatment, whereas the amounts of all wax constituents and total cuticular waxes significantly decreased at 14 days after MeJA treatment. The application of SA and ACC had no significant influence on cuticular wax deposition at 7 and 14 days after treatments, except for an amount reduction of primary alcohol, aldehyde and unknown constituents for SA treatment at 14 days after treatment. At 21 days after SA, MeJA, and ACC application, the amounts of total cuticular wax, n-alkanes, ketones and aldehyde significantly increased. C29 n-alkane, C29 ketone, and C30 aldehyde were the main cuticular wax constituents induced by SA, MeJA, and ACC application, implying that n-alkane, ketone and aldehyde might be related to the resistance to stresses induced by these signal molecules. Scan electric microscope analysis indicted that the rod-shape structure of cuticular wax in leaf surface reduced and some rods melted under SA treatment. MeJA and ACC application increased the distribution density of wax crystalloids. The cuticular wax deposition and crystal structure alteration reduced the cuticular permeability and delayed the leaf water loss. The specific increase of C29 n-alkane might be the main reason for reducing leaf water loss in B. napus.

Key words: Brassica napus L, Cuticular wax, Salicylic acid, Methyl jasmonic acid, Ethylene

[1] Kosma D K, Bourdenx B, Bernard A, Parsons E P, Lü S, Joubès J, Jenks M A. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol, 2009, 151: 1918–1929
[2] Ni Y, Xia R E, Li J N. Changes of epicuticular wax induced by enhanced UV-B radiation impact on gas exchange in Brassica napus. Acta Physiol Plant, 2014, 36: 2481–2490
[3] 倪郁, 宋超, 王小清. 低温胁迫下拟南芥表皮蜡质的响应机制. 中国农业科学, 2014, 47: 252–261
Ni Y, Song C, Wang X Q. Investigation on response mechanism of epicuticular wax on Arabidopsis thaliana under cold stress. Sci Agric Sin, 2014, 47: 252–261 (in Chinese with English abstract)
[4] 倪郁, 宋超, 王小清. 核盘菌侵染对拟南芥表皮蜡质结构及化学组成的影响. 生态学报, 2014, 34: 4160–4166
Ni Y, Song C, Wang X Q. Effects of Sclerotinia sclerotiorum on the morphology and chemical constituents of epicuticular wax in Arabidopsis thaliana stems. Acta Ecol Sin, 2014, 34: 4160–4166 (in Chinese with English abstract)
[5] Cajustea J F, González-Candelasa L, Veyrat A, García-Breijo F J, Reig-Arminana J, Lafuente M T. Epicuticular wax content and morphology as related to ethylene and storage performance of ‘Navelate’ orange fruit. Postharvest Biol Tec, 2010, 55: 29–35
[6] Curry E. Effects of 1-MCP applied postharvest on epicuticular wax of apples (Malus domestica Borkh.) during storage. J Sci Food Agric, 2008, 88: 996–1006
[7] Macková J, Vašková M, Macek P, Hronková M, Schreiber L, Šantr??ek J. Plant response to drought stress simulated by ABA application: changes in chemical composition of cuticular waxes. Environ Exp Bot, 2013, 86: 70–75
[8] Seo P J, Lee S B, Suh M C, Park M J, Go Y S, Park C M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell, 2011, 23: 1138–1152
[9] Baker E A. The influence of environment on leaf wax development in Brassica oleracea var. gemmifera. New Phytol, 1974, 73: 955–966
[10] Grant R H, Heisler G M, Gao W, Jenks M. Ultraviolet leaf reflectance of common urban trees and the prediction of reflectance from leaf surface characteristics. Agric For Meteorol, 2003, 120: 127–139
[11] Khan M I, Fatma M, Per T S. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci, 2015, 6: 462–478
[12] Cheong J J, Yang D C. Methyl jasmonate as a vital substance in plants. Trends Genet, 2003, 19: 409–413
[13] Morgan P W, Drew M C. Ethylene and plant responses to stress. Physiol Plant, 1997, 100: 620–630
[14] Leide J, Hildebrandt U, Vogg G, Riederer M. The positional sterile (ps) mutation affects cuticular transpiration and wax biosynthesis of tomato fruits. J Plant Physiol, 2011, 168: 871–877
[15] Singh K, Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress responses. Curr Opins Plant Biol, 2002, 5: 430–436
[16] Broun P, Poindexter P, Osborne E, Jiang C Z, Riechmann J L. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 4706–4711
[17] Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell, 2004, 16: 2463–2480
[18] Ni Y, Guo Y J, Wang J, Xia R E, Wang X Q, Ash G, Li J N. Responses of physiological indexes and leaf epicuticular waxes of Brassica napus to Sclerotinia sclerotiorum infection. Plant Pathol, 2014, 63: 174–184
[19] Kosma D K, Nemacheck J A, Jenks M A, Williams C E. Changes in properties of wheat leaf cuticle during interactions with Hessian fly. Plant J, 2010, 63: 31–43
[20] Garbay B, Tautu M T, Costaglioli P. Low level of pathogenesis-related protein 1 mRNA expression in 15-day-old Arabidopsis cer6-2 and cer2 eceriferum mutants. Plant Sci, 2007, 172: 299–305
[21] Staswick P E, Su W, Howell S H. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA, 1992, 89: 6837–6840
[22] 李延安, 祁林林, 孙加强, 刘宏宇, 李传友. 茉莉酸诱导侧根形成缺陷突变体asa1-1抑制子(soa)的鉴定与遗传分析. 遗传, 2011, 33: 1003–1010
Li Y A, Qi L L, Sun J Q, Liu H Y, Li C Y. Genetic screening and analysis of suppressors of asa1-1 (soa) defective in jasmonate-mediated lateral root formation in Arabidopsis. Hereditas, 2011, 33: 1003–1010 (in Chinese with English abstract)
[23] Boughton A J, Hoover K, Felton G W. Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum. J Chem Ecol, 2005, 31: 2211–2216
[24] Holloway P J, Brown G A, Baker E A, Macey M J K. Chemical composition and ultrastructure of the epicuticular wax in three lines of Brassica napus (L). Chem Phys Lipids, 1977, 19: 114–127
[25] Weng H, Molina I, Shockey J, Browse J. Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis. Planta, 2010, 231: 1089–1100
[26] Bourdenx B, Bernard A, Domergue F, Pascal S, Leger A, Roby D, Pervent M, Vile D, Haslam R P, Napier J A, Lessire R, Joubes J. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol, 2011, 156: 29–45
[27] Zhang J Y, Broeckling C D, Sumner L W, Wang Z Y. Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol, 2007, 64: 265–278
[28] Oliveira A F M, Meirelles S T, Salatino A. Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss. An Acad Bras Cienc, 2003, 75: 431–439
[29] Yang M, Yang Q Y, Fu T D, Zhou Y M. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance. Plant Cell Rep, 2011, 30: 373–388
[30] Vogg G, Fischer S, Leide J, Emmanuel E, Jetter R, Levy A A, Riederer M. Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid beta-ketoacyl-CoA synthase. J Exp Bot, 2004, 55: 1401–1410
[31] Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol, 2005, 43: 205–227
[32] Thomma B P H J, Eggermont K, Penninckx I A M A, Mauch-Mani B, Vogelsang R, Cammue B P A, Broeckaert W. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA, 1998, 95: 15107–15111

[1] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[2] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[3] LI Run-Zhi, JIN Qing, LI Zhao-Hu, WANG Ye, PENG Zhen, DUAN Liu-Sheng. Salicylic acid improved salinity tolerance of Glycyrrhiza uralensis Fisch during seed germination and seedling growth stages [J]. Acta Agronomica Sinica, 2020, 46(11): 1810-1816.
[4] LI Yang,YAO Lu-Hua,GUO Xin,ZHAO Xiao,HUANG Lei,WANG Deng-Ke,ZHANG Xue-Feng,XIAO Qian-Lin,YANG Rui-Ji,GUO Yan-Jun. Chemical compositions of cuticular waxes on stems and leaves of three legume green manure crops [J]. Acta Agronomica Sinica, 2020, 46(01): 131-139.
[5] SONG Song-Quan,LIU Jun,XU Heng-Heng,ZHANG Qi,HUANG Hui,WU Xian-Jin. Biosynthesis and signaling of ethylene and their regulation on seed germination and dormancy [J]. Acta Agronomica Sinica, 2019, 45(7): 969-981.
[6] Ren-Feng XUE, Li WANG, Ming FENG, Wei-De GE. Identification and Expression Analysis of Likely Orthologs of Tobacco Salicylic Acid Binding Protein 2 in Common Beans [J]. Acta Agronomica Sinica, 2018, 44(05): 642-649.
[7] YU Jian,LIU Chang-Ying,ZHAO Ai-Chun,WANG Chuan-Hong,CAI Yu-Xiang,YU Mao-De*. Functional Analysis of 1-Aminocyclopropane-1-carboxylate Oxidase Gene’s Promoter in Mulberry [J]. Acta Agron Sin, 2017, 43(06): 839-848.
[8] XU Yi**,PENG Yang**,LI Shuai,ZHAO Qiu-Ling,ZHANG Shuang-Juan,LI Jia-Na,NI Yu*. Cloning and Expression Analysis of Alkane Hydroxylase Gene MAH1 from Brassica napus [J]. Acta Agron Sin, 2017, 43(05): 640-647.
[9] XU Wen,SHEN Hao,GUO Jun,YU Xiao-Cong,LI Xiang,YANG Yan-Hui,MA Xiao,ZHAO Shi-Jie,SONG Jian-Min. Drought Resistance of Wheat NILs with Different Cuticular Wax Contents in Flag Leaf [J]. Acta Agron Sin, 2016, 42(11): 1700-1707.
[10] LU Lin,DONG Zhi-Qiang*,DONG Xue-Rui,LI Guang-Yan. Effects of Ethylene-Chlormequat-Potassium on Characteristics of Leaf Senescence at Different Plant Positionsafter Anthesis under Different Planting Densities [J]. Acta Agron Sin, 2016, 42(04): 561-573.
[11] LU Lin,DONG Zhi-Qiang,DONG Xue-Rui,JIAO Liu,LI Guang-Yan,GAO Jiao. Effects of Ethylene-Chlormequat-Potassium on Leaf Nitrogen Assimilation after Anthesis and Early Senescence under Different Planting Densities [J]. Acta Agron Sin, 2015, 41(12): 1870-1879.
[12] HU Mao-Long, PU Hui-Ming, LONG Wei-Hua, GAO Jian-Qin, QI Cun-Kou, ZHANG Jie-Fu, CHEN Song. Enzymatic Characteristics of Acetolactate Synthase Mutant S638N in Brassica napus and Its Resistance to ALS Inhibitor Herbicides [J]. Acta Agron Sin, 2015, 41(09): 1353-1360.
[13] ZHANG Wen-Yu, ZHANG Wei-Xin, GE Dao-Kuo, CAO Hong-Xin, LIU Yan, XUAN Shou-Li, FU Kun-Ya, FENG Chun-Huan, CHEN Wei-Tao. Modeling of Biomass-Based Leaf Morphological Parameters on Main Stem for Rapeseed (Brassica napus L.) [J]. Acta Agron Sin, 2015, 41(09): 1435-1444.
[14] XU Gen-Di,GE Shu-Fang,ZAHNG Yi,WU Yu-Huang,MEI Xiao-Man,LIU Peng. Effect of Salicylic Acid on Growth and Nutrient Uptake in Hydroponic Tobacco under Cu Stress [J]. Acta Agron Sin, 2015, 41(06): 956-962.
[15] ZHENG Xiao-Min,GUO Nan,GAO Tian-Shu,GONG Hui-Ming,ZHANG Tao. Cloning and Expression Analysis of Defensin Genes from Brassica napus [J]. Acta Agron Sin, 2015, 41(05): 725-732.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!