[1]杨真, 王宝山. 中国盐渍土资源现状及改良利用对策. 山东农业科学, 2015, 47(4): 125–130
Yang Z, Wang B S. Present status of saline soil resources and countermeasures for improvement and utilization in China. Shandong Agric Sci, 2015, 47(4): 125–130 (in Chinese with English abstract)
[2]Qadir M, Ghafoor A, Murtaza G. Amelioration strategies for saline soils: A review. Land Degrad Devel, 2000, 11: 501–521
[3]沈金雄, 傅廷栋. 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2011, 13(1): 1–8
Shen J X, Fu T D. Rapeseed production, improvement and edible oil supply in China. J Agric Sci Technol, 2011, 13(1): 1–8 (in Chinese with English abstract)
[4]陈宗金, 蔡士宾, 杨继书, 张巧凤, 吴纪中, 蒋彦婕, 颜伟, 吴小有. 主要农作物芽期耐盐性比较研究. 农业科学, 2012, 2(4): 59–65
Chen Z J, Cai S B, Yang J S, Zhang Q F, Wu J Z, Jiang Y J, Yan W, Wu X Y. Comparison of salinity tolerance among main crops at germination stage. Hans J Agric Sci, 2012, 2(4): 59–65 (in Chinese with English abstract)
[5]王佳丽, 黄贤金, 钟太洋, 陈志刚. 盐碱地可持续利用研究综述. 地理学报, 2011, 66: 673–684
Wang J L, Huang X J, Zhong T Y, Chen Z G. Review on Saline-alkali land sustainable utilization research. Acta Geograph Sin, 2011, 66: 673–684 (in Chinese with English abstract)
[6]易斌, 陈伟, 马朝芝, 傅廷栋, 涂金星. 甘蓝型油菜产量及相关性状的QTL分析. 作物学报, 2006, 32: 676–682
Yi B, Chen W, Ma C Z, Fu T D, Tu J X. Mapping of quantitative trait loci for yield and yield components in Brassica napus L. Acta Agron Sin, 2006, 32: 676–682 (in Chinese with English abstract)
[7]Yang P, Shu C, Chen L, Xu J S, Wu J S, Liu K D. Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet, 2012, 125: 285–296
[8]孙美玉. 甘蓝型油菜含油量QTLs定位及候选基因筛选. 中国农业科学院博士论文, 湖北武汉, 2012. pp 51–54
Sun M Y. Mapping of QTLs and Screening of Candidate Genes for Oil Content in Brassica napus. PhD Dissertation of Chinese Academy of Agricultural Sciences, Wuhan, China, 2012. pp 51–54 (in Chinese with English abstract)
[9]Yang M, Ding G D, Shi L, Feng J, Xu F S, Meng J L. Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet, 2010, 121: 181–193
[10]张凤启, 刘越英, 程晓辉, 童超波, 董彩华, 唐敏强, 黄军艳, 刘胜毅. 利用高密度SNP标记定位甘蓝型油菜株高QTL. 中国油料作物学报, 2014, 36: 695–700
Zhang F Q, Liu Y Y, Cheng X H, Tong C B, Dong C H, Tang M Q, Huang J Y, Liu S Y. QTL mapping of plant height using high density SNP markers in Brassica napus. Chin J Oil Crop Sci, 2014, 36: 695–700 (in Chinese with English abstract)
[11]Y?ld?z M, Akçal? N, Terzi H. Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid. J Plant Physiol, 2015, 179: 90–99
[12]刘国红, 姜超强, 刘兆普, 梁明祥, 殷祥贞, 郑青松. 盐胁迫对油菜幼苗生长和光合特征的影响. 生态与农村环境学报, 2012, 28(2): 157–164
Liu G H, Jiang C Q, Liu Z P, Liang M X, Yin X Z, Zheng Q S. Effects of salt stress on growth and photosynthetic traits of Canola seedlings. J Ecol Rural Environ, 2012, 28(2): 157–164 (in Chinese with English abstract)
[13]郑青松, 刘海燕, 隆小华, 刘兆普, 牛丹丹, 高影影. 盐胁迫对油菜幼苗离子吸收和分配的影响. 中国油料作物学报, 2010, 32: 65–70
Zheng Q S, Liu H Y, Long X H, Liu Z P, Niu D D, Gao Y Y. Effects of salt stress on ionic absorption and distribution of rapeseed seedlings. Chin J Oil Crop Sci, 2010, 32: 65–70 (in Chinese with English abstract)
[14]Li Z, Mei S F, Mei Z, Liu X L, Fu T D, Zhou G S, Tu J X. Mapping of QTL associated with waterlogging tolerance and drought resistance during the seedling stage in oilseed rape (Brassica napus). Euphytica, 2014, 197(3): 341–353
[15]荐红举, 肖阳, 李加纳, 马珍珍, 魏丽娟, 刘列钊. 利用SNP遗传图谱定位盐、旱胁迫下甘蓝型油菜种子发芽率的QTL. 作物学报, 2014, 40: 629–635
Jian H J, Xiao Y, Li J N, Ma Z Z, Wei L J, Liu L Z. QTL mapping for germination percentage under salinity and drought stresses in Brassica napus L. using a SNP genetic map. Acta Agron Sin, 2014, 40: 629–635 (in Chinese with English abstract)
[16]Moursi Y S S. Genetic Mapping of QTL Controlling Salt Tolerance and Glucosinolates in Brassica napus and Brassica oleracea. PhD Dissertation of Georg-August-University, Germany, Göttingen, 2014. pp 73–78
[17]Liu L Z, Qu C M, Wittkop B, Yi B, Xiao Y, He Y J, Snowdon R J, Li J N. High-Density SNP Map for Accurate Mapping of Seed Fibre QTL in Brassica napus L. PloS One, 2013, 8: e83052. DOI:10.1371/journal.pone.0083052
[18]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer. Ver.2.5 [computer program] Department of Statistics, North Carolina State University, Raleigh, NC, 2006. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
[19]Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185–199
[20]Mccouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11–13
[21]Chalhoub B, Denoeud F, Liu S Y, Isobe I A, Tang H B, Wang X Y,Chiquet J, Belcram H, Tong C B, Samans B, Corréa M, Silva C D, Just J, Falentin C, Koh S H, Clainche I L, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M X, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Paslier M L, Fan G Y, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H D, Chalabi S, Hu Q, Fan C C, Tollenaere R, Lu Y H, Battail C, Shen J X, Sidebottom C H. D, Wang X F, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z S, Sun F M, Lim Y P, Lyons E, Christopher D, Town, Ian B, Wang X W, Meng J L, Ma J X, Pires J C, Graham J, King, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y M, Hua W, Sharpe A G, Paterson A H, Guan C Y, Wincker P. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science, 2014, 345: 950–953
[22]Feng J L, Li J J, Gao Z X, Lu Y R, Yu J Y, Zheng Q, Yan S N, Zhang W J, He H, Ma L G, Zhu Z G. SKIP confers osmotic tolerance during salt stress by controlling alternative gene splicing in Arabidopsis. Mol Plant, 2015, 87: 1038–1052
[23]Hong S W, Jon J H, Kwak J M, Nam H G. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol, 1997, 113: 1203–1212
[24]Woei-Jiun G, Tuan-Hua D H. An abscisic acid-induced protein, HVA22, inhibits gibberellin-mediated programmed cell death in cereal aleurone cells. Plant Physiol, 2008, 148: 1182–1182
[25]Elfving N, Davoinea C, Benllochb R, Blomberga J, Brännströma K, Müllerc D, Nilssond A, Ulfstedtd M, Ronned H, Wingsleb G, Nilssonb O, Björklunda S. The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development. PNAS, 2011, 108: 8245–8250
[26]Ortega-Amaro MA, Rodriguez-Hernandez AA, Rodriguez-Kessler M, Hernandez-Lucero E, Rosales Mendoza S, Ibañez-Salazar A, Delgado P, Jimenez Bremont JF. Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance. Front Plant Sci, 2015, 5: 782–783
[27]Seifert G J, Xue H, Acet T. The Arabidopsis thaliana Fasciclin like arabinogalactan protein 4 gene acts synergistically with abscisic acid signalling to control root growth. Ann Bot, 2014, 114: 1125–1133
[28]Ohnuma T, Numata T, Osawa T, Mizuhara M, Lampela O, Juffer A H, Skriver K, Fukamizo T. A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis. Planta, 2011, 234: 123–137
[29]Glass M, Barkwill S, Unda F, Mansfield S D. Endo-β-1,4-glucanases impact plant cell wall development by influencing cellulose crystallization. J Integ Plant Biol, 2015, 57: 396–410
[30]Munns R, Tester M. Mechanisms of salinity tolerance. Ann Rev Plant Biol, 2008, 59: 651–681
[31]Ashraf M, McNeilly T. Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci, 2004, 23: 157–174
[32]Tunçtürk M, Tunçtürk R, Yildirim B, Çiftçi V. Changes of micronutrients, dry weight and plant development in canola (Brassica napus L.) cultivars under salt stress. Afric J Biotechnol, 2011, 10: 3726–3730
[33]Yeo A R. Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot, 1998, 49: 915–929
[34]Flowers T J, Yeo A R. Breeding for salinity resistance in crop plants: Where next? Aust J Plant Physiol, 1995, 22: 875–884
[35]Osakabe Y, Mizuno S, Tanaka H, Maruyama K, Osakabe K, Todaka D, Fujita Y, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K. Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. J Biol Chem, 2010, 285: 9190–9201
[36]Shi C C, Feng C C, Yang M M, Li J L, Li X X, Zhao B C, Huang Z J, Ge R C. Overexpression of the receptor-like protein kinase genes AtRPK1 and OsRPK1 reduces the salt tolerance of Arabidopsis thaliana. Plant Sci, 2014, 217: 63–70
[37]Long W H, Zou X L, Zhang X K. Transcriptome analysis of canola (Brassica napus) under salt stress at the germination stage. PloS One, 2015, 10(2): e0116217. |