Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (02): 190-200.doi: 10.3724/SP.J.1006.2017.00190

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning of Na+ Transporter Protein SbSKC1 Gene from Sorghum and Identification of Its Salt-resistant Function in Tobacco

YAO Xin-Zhuan1,2,LIU Yang2,3,*,ZHAO De-Gang1,2,*   

  1. 1 College of Life Sciences and Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; 2 The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guiyang 550025, China; 3 College of Tobacco Science, Guizhou University, Guiyang 550025, China
  • Received:2016-04-20 Revised:2016-09-18 Online:2017-02-12 Published:2016-09-29
  • Contact: 刘洋, E-mail: liuyangbun@163.com; 赵德刚, E-mail: dgzhao@gzu.edu.cn
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (31160149), Agricultural science and technology project of Guizhou provincial science and Technology Department (NZ word [2012]3009 in Guizhou), and National new varieties of genetically modified organisms to cultivate a major special (2014ZX08010-003).

Abstract:

Na+ transporter proteingene plays an important role in plant in response to abiotic stresses. In this research, SbSKC1, a Na+ transporter gene was cloned from Sorghum bicolor. The full-length open reading frame comprises 1497 bp and encodes 498 amino acids. Multiple sequence alignment and phylogenetic analysis showed that the Na+ transporter gene SbSKC1 in sorghum and maize had a high similarity. The SbSKC1gene was transferred into tobacco (Nicotiana tabacum cv. Xanthi) via Agrobacterium- mediated transformation. The salt tolerance of transgenic tobacco was screened by PCR. Under the 300mmol L-1 NaCl treatment, the survival rate of transgenic tobacco was higher than that of wild type and the root length of transgenic tobacco was significantly higher than that of the wild type. At the same time, transgenic tobacco maintained a higher content of K+/Na+. Under salt stress treatment, the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were significantly higher in transgenic tobacco than in the wild type. However, the content of hydrogen peroxide (H2O2) in transgenic tobacco was 37.7% lower than in the wild type tobacco. It’s suggests that overexpression of SbSKC1 gene can significantly improve the salt resistance of tobacco.

Key words: Tobacco, SbSKC1 gene, Salt resistance, Oxidation resistance

[1]Lagarde D, Basset M, Lepetit M, Conejero G, Gaymard F, Astruc S, Grignon C. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J, 1996, 9: 195–203
[2]Hirsch R E, Lewis B D, Spalding E P, Sussman M R. A role for the AKT1 potassium channel in plant. Nutr Sci, 1998, 280: 918–921
[3]Ivashikina N, Becker D, Ache P, Meyerhoff O, Felle H H, Hedrich R. K+ channel profile and electrical properties of Arabidopsis root hairs. Febs Lett, 2001, 508: 463–469
[4]Véry A A, Sentenac H. Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol, 2003, 54: 575–603
[5]Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 2005, 37: 1141–1146
[6]于志晶, 蔡勤安, 刘艳芝, 齐广勋, 马瑞, 董英山. Na+转运蛋白SKC1基因转化大豆的研究. 吉林农业科学, 2014, 39(1): 1–5
Yu Z J, Cai Q A, Liu Y Z, Qi G X, Ma R, Dong Y S. Genetic transformation of Na+ transporter gene SbSKC1 into soybean mediated with Agrobacterium. Jilin Acad Agri Sci, 2014, 39(1): 1–5 (in Chinese with English abstract)
[7]Hassanein A. Salt tolerance of fifty grain sorghum genotypes at seedling stage [Egypt]. J Agri Sci (Egypt), 1985, 30: 163–176
[8]Azhar F, Mcneilly T. Variability for salt tolerance in Sorghum bicolor (L.) Moench. under hydroponic conditions. J Agron Crop Sci, 1987, 159: 269–277
[9]Azhar F, Mcneilly T. The genetic basis of variation for salt tolerance in Sorghum bicolor (L.) Moench seedlings. Plant Breed, 1988, 101: 114–121
[10]Maiti R, De La Rosa-Ibarra M, Sandoval N D. Genotypic variability in glossy sorghum lines for resistance to drought, salinity and temperature stress at the seedling stage. J Plant Physiol, 1994, 143: 241–244
[11]韩玉翠, 叶凯, 侯升林, 涂振东, 吕芃, 杜瑞恒, 刘国庆. 高粱耐盐分子生物学研究进展. 中国农业科技导报, 2014, 16: 65–70
Han Y C, Ye K, Hou S L, Tu Z D, Lyu P, Du R H, Liu G Q. Progress on molecular biology of salinity tolerancein sorghum. J Agric Sci and Technol, 2014, 16: 65–70 (in Chinese with English abstract)
[12]王宝山, 邹琦, 赵可夫. 高粱不同器官生长对NaCl胁迫的响应及其耐盐阈值. 西北植物学报, 1997, 17: 279–285
[13]Wang B S, Zou Q, Zhao K F. Response of different organ grovth of sorghum to NaCl stress and the threshhold salinity. Acta Bot Boreali-Occident Sin, 1997, 17: 279–285 (in Chinese with English abstract)
[14]Almodares A, Hadi M, Dosti B. Effects of salt stress on germination percentage and seedling growth in sweet sorghum cultivars. J Biol Sci, 2007, 7: 1492–1495
[15]王明珍, 朱志华, 张晓芳. 中国高粱品种资源耐盐性鉴定初报. 作物品种资源, 1992, 12(2): 28–29
Wang M Z, Zhu Z H, Zhang X F. Preliminary report on salt tolerance identification of Chinese sorghum varieties. Crop Germplasm Resourc, 1992, 12(2): 28–29 (in Chinese)
[16]孙守钧, 刘惠芬, 王云, 张云华, 孙丽华, 李子芳. 高粱-苏丹草杂交种耐盐性的杂种优势研究. 华南农业大学学报, 2004, 25(增刊): 24–27
[17]Sun S J, Liu H F, Wang Y, Zhang Y H, Sun L H, Li Z F. Study on heterosis of salt otleanrce for sorghn-sudangarss hybird. J South China Agric Univ, 2004, 25(suppl): 24–27 (in Chinese with English abstract)
[18]张云华, 孙守均, 王云, 宋桂云, 王翠花, 白金明. 高梁萌发期和苗期耐盐性研究. 内蒙古民族大学学报(自然科学版), 2004, 19: 300–302
Zhang Y H, Sun S J, Wang Y, Song G Y, Wang C H, Bai J M. The studies on salinity tolerance during burgeon- periodand seedling- period of sorghum. J Inner Mongolica Univ Natl (Nat Sci Edn), 2004, 19: 300–302 (in Chinese with English abstract)
[19]韩福光, 赵海岩, 林凤, 杨立国. 高粱幼叶离体培养的衍生系的耐盐筛选与性状分析. 作物学报, 1997, 23: 491–495
Han F G, Zhao H Y, Lin F, Yang L G. Screening for salt (NaCl) tolerant Lines through in vitro cultureunder salt stress conditionand studieson their diffetellt chsrseters. Ata Argon Sin, 1997, 23: 491–495 (in Chinese with English abstract)
[20]谢登雷, 崔江慧, 常金华. 高粱中SbDREB2基因的克隆与表达分析. 作物学报, 2013, 39: 1352–1359
Xie D L, Cui J H, and Chang J H. Cloning and expression analysis of SbDREB2 gene from Sorghum bicolor. Acta Agron Sin, 2013, 39: 1352−1359
[21]Qin L J, Zhao D, Zhao D G. Overexpression of NrCN improved TMV resistance in selection marker-free tobacco generated by gene-deletor system. Plant Mol Biol Rep, 2015, 33: 1619–1633
[22]Wei H, Qian Q Y, Yan W, Rui C, Xiao M D, Jie W, Shi Y Z, Ming J C, Li H C, Chao H. Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco. Plant Cell Physiol, 2012, 53: 2127–2141
[23]张志良, 瞿伟菁, 李小芳. 植物生理学实验指导. 北京: 高等教育出版社, 2009. pp 54–58
Zhang Z L, Qu W J, Li X F. Experimental instruction of Plant Physiology. Beijing: Higher Education Press, 2009. pp 54–58 (in Chinese)
[24]吴延寿, 陈春莲, 熊运华, 黄永萍, 周文红, 徐兰香, 尹建华. 植物体内Na/K转运体研究进展. 江西农业学报, 2010, 22(6): 37–41
Wu Y S, Chen C L, Xiong Y H, Huang Y P, Zhou W H, Xu L X, Yin J H. Research progress of Na+/K+ transporters in plants. Acta Agric Jiangxi, 2010, 22(6): 37–41
[25]刘友良, 王良驹. 植物对盐胁迫的反应和耐盐性. 北京: 科学出版社, 1998. pp 752–769
Liu Y L, Wang L J. Responses of Plants to Salt Stress and Salt Tolerance. Beijing: Science Press, 1998. pp 752–769
[26]Surjus A, Durand M. Lipid changes in soybean root membranes in response to salt treatment. J Exp Bot, 1996, 47: 17–23
[27]覃鹏, 刘叶菊, 刘飞虎. 干旱胁迫对烟草叶片丙二醛含量和细胞膜透性的影响. 亚热带植物科学, 2004, 33(4): 8–10
Qin P, Liu Y J, Liu F H. Effects of drought stress on malondiadehyde content and cell membrane permeability in tobacco leaves. Subtropical Plant Sci, 2004, 33(4): 8–10 (in Chinese with English abstract)
[28]Roychoudhury A, Roy C, Sengupta D N. Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep, 2007, 26: 1839–1859
[29]萧蓓蕾, 刘丽霞, 冯建英. 盐胁迫对转ZmPP2C2基因烟草和野生型烟草部分生理生化指标的影响. 安徽农业科学, 2010, 38: 1834–1836
Xiao B L, Liu L X, Feng J Y. Effects of salt stress on some physiological and biochemical indices of transgenic tobacco harboring ZmPP2C2 and wild tobacco. J Anhui Agri Sci, 2010, 38: 1834–1836 (in Chinese with English abstract)
[30]Negi N P, Shrivastava D C, Sharma V, Sarin N B. Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco. Plant Cell Rep, 2015, 34: 1109–1126

[1] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[2] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[3] LIU Qing-Li,JIANG Yu-Zhou,ZOU Yan,ZHANG Yun-Gui,ZHANG Heng,SHI Jun-Xiong,LI Zhi-Hong. The study of carbon budget on field-tobacco ecosystem [J]. Acta Agronomica Sinica, 2020, 46(8): 1258-1265.
[4] DONG Qing-Yuan,MA De-Qing,YANG Xue,LIU Yong,HUANG Chang-Jun,YUAN Cheng,FANG Dun-Huang,YU Hai-Qin,TONG Zhi-Jun,SHEN Jun-Ru,XU Yin-Lian,LUO Mei-Zhong,LI Yong-Ping,ZENG Jian-Min. Construction and characterization of a BAC library for flue-cured tobacco line with high resistance to blank shank [J]. Acta Agronomica Sinica, 2020, 46(6): 869-877.
[5] HENG You-Qiang,YOU Xi-Long,WANG Yan. Pathogenesis-related protein gene SfPR1a from Salsola ferganica enhances the resistances to drought, salt and leaf spot disease in transgenic tobacco [J]. Acta Agronomica Sinica, 2020, 46(4): 503-512.
[6] Shan-Bin CHEN, Si-Fan SUN, Nan NIE, Bing DU, Shao-Zhen HE, Qing-Chang LIU, Hong ZHAI. Cloning of IbCAF1 and identification on tolerance to salt and drought stress in sweetpotato [J]. Acta Agronomica Sinica, 2020, 46(12): 1862-1869.
[7] Xiao-Han MA,Jie ZHANG,Huan-Wei ZHANG,Biao CHEN,Xin-Yi WEN,Zi-Cheng XU. Exogenous MeJA improves cold tolerance of tobacco by inhibiting H2O2 accumulation [J]. Acta Agronomica Sinica, 2019, 45(3): 411-418.
[8] Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG,Bing-Guang XIAO. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1 [J]. Acta Agronomica Sinica, 2019, 45(3): 477-482.
[9] Cheng-Jiang LI,Da-Fei LI,Gui-Su ZHOU,Long XU,Tian-Yang XU,Zheng-Xiong ZHAO. Effects of different types of biochar on soil microorganism and rhizome diseases occurrence of flue-cured tobacco [J]. Acta Agronomica Sinica, 2019, 45(2): 289-296.
[10] Jian-Fei ZHOU,Yun-Jie WU,Gang XUE,An-Qian ZHANG,Pei TIAN,Yu-Fu PENG,Tie-Zhao YANG. Relationship between GS isoenzyme activity and nitrogen transportation in flue-cured tobacco leaves [J]. Acta Agronomica Sinica, 2019, 45(1): 111-117.
[11] Dan-Xia KE,Kun-Peng PENG,Meng-Ke ZHANG,Yan JIA,Jing-Jing WANG. Cloning and Salt Resistance Function Identification of GmHDL57 Gene from Glycine max [J]. Acta Agronomica Sinica, 2018, 44(9): 1347-1356.
[12] Huan TAN,Yu-Hui LIU,Li-Xia LI,Li WANG,Yuan-Ming LI,Jun-Lian ZHANG. Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1021-1031.
[13] Jian-Wei WANG,Xiao-Lan HE,Wen-Xu LI,Xin-Hong CHEN. Molecular Cloning and Functional Analysis of 1-FFT in Wheat Relatives [J]. Acta Agronomica Sinica, 2018, 44(6): 814-823.
[14] ZHONG Si-Rong,CHEN Ren-Xiao,TAO Yao,GONG Si-Yu,HE Kuan-Xin,ZHANG Qi-Ming,ZHANG Shi-Chuan,LIU Qi-Yuan. Screening of Tobacco Genotypes with Tolerance to Low-Nitrogen and Analysis of Their Nitrogen Efficiency [J]. Acta Agron Sin, 2017, 43(07): 993-1002.
[15] SHEN Jie,CAI Yan,HE Yu-Ting,LI Qi-Quan,DU Xuan-Yan,WANG Chang-Quan,LUO Ding-Qi. Dynamic Simulation of Dry Matter Accumulation in Flue-cured Tobacco and Analysis of Its Characteristics Based on Normalized Method [J]. Acta Agron Sin, 2017, 43(03): 442-453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!