[1]Chang T T, Li C C, Vergara B S. Component analysis of duration from seeding to heading in rice by the basic vegetative phase and the photoperiod-sensitive phase. Euphytica, 1969, 18: 79–91 [2]岳兵, 邢永忠. 水稻抽穗期分子遗传研究进展. 分子植物育种, 2005, 3: 222–228 Yue B, Xing Y Z. Progress on molecular and genetic studies of heading date in rice. Mol Plant Breed, 2005, 3(2): 222–228 (in Chinese with English abstract) [3]孙旭初. 水稻茎杆抗倒性的研究. 中国农业科学, 1987, 20(4): 32–37 Sun X C. Studies on the resistance of the culm of rice to lodging. Sci Agric Sin, 1987, 20(4): 32–37 (in Chinese with English abstract) [4]李荣田, 姜廷波, 秋太权, 崔成焕, 龚振平. 水稻倒伏对产量影响及倒伏和株高关系的研究. 黑龙江农业科学, 1996, (1): 13–17 Li R T, Jiang T B, Qiu T Q, Cui C H, Gong Z P. Study on effect of loading to yield and relationship between lodging and plant height in rice. Agric Sci Heilongjiang, 1996, (1): 13–17 (in Chinese with English abstract) [5]林鸿宣, 钱惠荣, 熊振民, 闵绍楷, 郑康乐. 几个水稻品种抽穗期主效基因与微效基因的定位研究. 遗传学报, 1996, 23: 205–213 Lin H X, Qian H R, Xiong Z M, Min S K, Zheng K L. Mapping of major genes and minor genes for heading date in several rice varieties. Acta Genet Sin, 1996, 23: 205–213 (in Chinese with English abstract) [6]邱磊, 蒋海潮, 冯玉涛, 高冠军, 张庆路, 何予卿. 控制水稻抽穗期和株高的 QTL 的定位及遗传分析. 基因组学与应用生物学, 2014, 33: 828–835 Qiu L, Jiang H C, Feng Y T, Gao G J, Zhang Q L, He Y Q. Mapping and genetic analysis of QTL for heading date and plant height in rice. Genomics Appl Biol, 2014, 33: 828–835 (in Chinese with English abstract) [7]李秀兰, 徐承水. 水稻株高基因及其在育种上的应用. 山东农业科学, 2009, (10): 24–28 Li X L, Xu C S. Plant height genes in rice and their application to breeding. Agric Sci Shandong, 2009, (10): 24–28 (in Chinese with English abstract) [8]杜雪树, 戚华雄, 廖世勇, 方非. 水稻抽穗期分子生物学研究进展. 湖北农业科学, 2013, 52: 5958–5962. Du X S, Qi H X, Liao S Y, Fang F. Advances on the molecular biology of rice heading date. Hubei Agric Sci, 2013, 52: 5958–5962 (in Chinese with English abstract) [9]胡时开, 苏岩, 叶卫军, 郭龙彪. 水稻抽穗期遗传与分子调控机理研究进展. 中国水稻科学, 2012, 26: 373–382. Hu S K, Su Y, Ye W J, Guo L B. Advances in genetic analysis and molecular regulation mechanism of heading date in rice(Oryza sativa L.). Chin J Rice Sci, 2012, 26: 373–382 (in Chinese with English abstract) [10]张云辉, 张所兵, 林静, 汪迎节, 方先文. 水稻株高基因克隆及功能分析的研究进展. 中国农学通报, 2014, 30(12): 1–7 Zhang Y H, Zhang S B, Ling J, Wang Y J, Fang X W. Research progress on cloning and functional analysis of plant height genes in rice(Oryza sativa L.). Chin Agric Sci Bull, 2014, 30(12): 1–7 (in Chinese with English abstract) [11]Hori K, Matsubara K, Yano M. Genetic control of flowering time in rice: integration of Mendelian genetics and genomics. Int J Polym Anal Charact, 2010, 67(5): 717–725. [12]Guo L B, Ye G. Use of major quantitative trait loci to improve grain yield of rice. Rice Sci, 2014, 21(2): 65–82 [13]Flint-Garcia S A, Thornsberry J M, Buckler IV E S. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol, 2003, 54: 357–374 [14]Yu J, Buckler E S. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol, 2006, 17: 155–160 [15]Salvi S, Tuberosa R. To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci, 2005, 10: 297–304 [16]Zhao K, Tung C W, Eizenga G C, Zhao K, Tung C W, Eizenga G C, Wright M H, Ali M L, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun, 2011, 2: 467 [17]Lipka A E, Kandianis C B, Hudson M E, Yu J, Drnevich J, Bradbury P J, Gore M A. From association to prediction: statistical methods for the dissection and selection of complex traits in plants. Curr Opin Plant Biol, 2015, 24: 110–118 [18]Kover P X, Valdar W, Trakalo J, Scarcelli N, Ehrenreich I M, Purugganan M D, Durrant C, Mott R. A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet, 2009, 5(7): e1000551 [19]Higgins R H, Thurber C S, Assaranurak I, Brown P J. Multiparental mapping of plant height and flowering time QTL in partially isogenic sorghum families. G3 (Bethesda), 2014, 4: 1593–1602 [20]Mackay I J, Bansept-Basler P, Barber T, Bentley A R, Cockram J, Gosman N, Greenland A J, Horsnell R, Howells R, O'Sullivan D M, Rose G A, Howell P J. An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: creation, properties, and validation. G3 (Bethesda), 2014, 4: 1603–1610 [21]Rakshit S, Rakshit A, Patil J V. Multiparent intercross populations in analysis of quantitative traits. J Genet, 2012, 91: 111–117 [22]Li Z, Ye G, Yang M E, Liu Z X, Lu D B, Mao X X, Wu Q H, Li X F. Genetic characterization of a multiparent recombinant inbred line rice population. Res Crops, 2014, 15: 28–37 [23]Rebetzke G J, Verbyla A P, Verbyla K L, Morell M K, Cavanagh C R. Use of a large multiparent wheat mapping population in genomic dissection of coleoptile and seedling growth. Plant Biotechnol J, 2014, 12: 219–230 [24]Valdar W, Flint J, Mott R. Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. Genetics, 2006, 172: 1783–1797 [25]Broman K W. Genotype probabilities at intermediate generations in the construction of recombinant inbred lines. Genetics, 2012, 190(2): 403–412 [26]Yamamoto E, Iwata H, Tanabata T, Mizobuchi R, Yonemaru J, Yamamoto T, Yano M. Effect of advanced intercrossing on genome structure and on the power to detect linked quantitative trait loci in a multi-parent population: a simulation study in rice. BMC Genet, 2014, 15(1): 50 [27]Meng L, Guo L, Ponce K, Zhao X, Ye G. Characterization of three rice multiparent advanced generation intercross (MAGIC) action. Plant Genome, 2016, 9(2): 1–14 [28]Meng L, Zhao X, Ponce K, Ye G, Leung H. QTL mapping for agronomic traits using multi-parent advanced generation inter-cross (MAGIC) populations derived from diverse elite indica rice lines. Field Crops Res, 2016, 189: 19–42 [29]陈天晓, 朱亚军, 密雪飞, 陈凯, 孟丽君, 左示敏, 徐建龙. 利用水稻MAGIC群体关联定位白叶枯病抗性QTL和创制抗病新种质. 作物学报, 2016, 42: 1437–1447 Chen T X, Zhu Y J, Mi X F, Chen K, Meng Li J, Zuo S M, Xu J L. Mapping of QTLs for bacterial blight resistance and screening of resistant materials using MAGIC populations of rice. Acta Agron Sin, 2016, 42: 1437–1447 (in Chinese with English abstract) [30]Bian X F, Liu X, Zhao Z G, Jiang L, Gao H, Zhang Y H, Zheng M, Chen L M, Liu S J, Zhai H Q, Wan J M. Heading date gene, dth3 controlled late flowering in O. Glaberrima Steud. by down-regulating Ehd1. Plant Cell Rep, 2011, 30: 2243–2254 [31]Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri Y A, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K. 14–3–3 proteins act as intracellular receptors for rice Hd3a florigen. Nature, 2011, 476: 332–335 [32]Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xing Y Z, Zhang Q F. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4: 319–330 [33]Li R, Xia J, Xu Y, Zhao X, Liu Y G, Chen Y. Characterization and genetic mapping of a Photoperiod-sensitive dwarf 1 locus in rice (Oryza sativa L.). Theor Appl Genet, 2014, 127: 241–250 [34]Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9: 11–17 [35]Zhao M, Liu B, Wu K, Ye Y, Huang S, Wang S, Wang Y, Han R, Liu Q, Fu X, Wu Y. Regulation of OsmiR156h through alternative polyadenylation improves grain yield in rice. PLoS One, 2015, 10(5): e0126154 [36]Pascual L, Desplat N, Huang B E, Desgroux A, Bruguier L, Bouchet J P, Le Q H, Chauchard B, Verschave P, Causse M. Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnol J, 2015, 13: 565–577 [37]Stich B, M?hring J, Piepho H P, Heckenberger M, Buckler E S, Melchinger A E. Comparison of mixed-model approaches for association mapping. Genetics, 2008, 178: 1745–1754 [38]王韵, 程立锐, 孙勇,周政, 朱苓华, 徐正进, 徐建龙, 黎志康. 利用双向导入系解析水稻抽穗期和株高QTL及其与环境互作表达的遗传背景效应. 作物学报, 2009, 35: 1386–1394 Wang Y, Cheng L R, Sun Y, Zhou Z, Zhu L H, Xu Z J, Xu J L, L Z K. Genetic background effect on QTL expression of heading date and plant height and their interaction with environment in reciprocal introgression lines of rice. Acta Agron Sin, 2009, 35: 1386–1394 (in Chinese with English abstract) [39]Lee Y S, An G. Regulation of flowering time in rice. J Plant Biol, 2015, 58: 353–360 |