Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (8): 1256-1260.doi: 10.3724/SP.J.1006.2018.01256

• RESEARCH NOTES • Previous Articles    

Identification of Maize Germplasm for Resistance to Pythium Stalk Rot

Yang YANG1,2,**(),Guo-Kang CHEN1,**(),Cheng GUO3,Wei ZHANG1,Su-Li SUN2,Xiao-Ming WANG2,Zhen-Dong ZHU2,Can-Xing DUAN2,*()   

  1. 1 College of Plant Protection, Southwest University, Chongqing 400715, China
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
    3 Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2018-01-05 Accepted:2018-06-12 Online:2018-08-10 Published:2018-06-20
  • Contact: Yang YANG,Guo-Kang CHEN,Can-Xing DUAN E-mail:1324746330@qq.com;chenguokang@swu.edu.cn;duancanxing@caas.cn
  • Supported by:
    the National Key Research and Development Program of China(2016YFD0100103);the Special Fund for Protection of Crop Germplasm Resources(2017NWB036-12);the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences.

Abstract:

Pythium stalk rot is a serious disease in maize production. A total of 1213 maize accessions were screened for resistance to Pythium stalk rot from 2013 to 2016. Among the 1213 germplasm resources, 207 were highly resistant to Pythium stalk rot, accounting for 17.1% of total accessions screened, mainly from Inner Mongolia, Hebei, Shanxi Provinces of China and the United States, 159 were resistant to Pythium stalk rot, accounting for 13.1% of total accessions, mainly from Inner Mongolia, Yunnan, Shanxi Provinces of China and USA, showing that there are relatively abundant germplasm resistant to Pythium stalk rot in these maize accessions, and the level of resistance is related to geographical origin. In present study, 18.7% of maize inbred lines were highly resistant to Pythium stalk rot, whereas 10.6% of landraces were highly resistant to the same diseases, indicating higher level of resistance and more multiple resistance were in inbred lines than in landraces.

Key words: maize, Pythium inflatum, stalk rot, resistance identification

Table 1

Evaluation standard of the resistance to maize stalk rot"

病情级别
Scale
发病株率
Disease rate (%)
抗性
Resistance
1 0-5.0 高抗 Highly resistant (HR)
3 5.1-10.0 抗 Resistant (R)
5 10.1-30.0 中抗 Moderately resistant (MR)
7 30.1-40.0 感 Susceptible (S)
9 40.1-100 高感 Highly susceptible (HS)

Table 2

Some maize accessions with high resistance (HR) to Pythium stalk rot"

名称
Name
抗性
Resistance
来源
Source
类型
Type
x002b 高抗 HR 中国河北 Hebei, China 自交系 Inbred line
X016 高抗 HR 中国河北 Hebei, China 自交系 Inbred line
海108 Hai 108 高抗 HR 中国河北 Hebei, China 自交系 Inbred line
H145 高抗 HR 中国河北 Hebei, China 自交系 Inbred line
08F31 高抗 HR 中国山西Shanxi, China 自交系 Inbred line
18--14 高抗 HR 中国山西Shanxi, China 自交系 Inbred line
JP2 高抗 HR 中国山西Shanxi, China 自交系 Inbred line
辉2 Hui 2 高抗 HR 中国山西Shanxi, China 自交系 Inbred line
原27 Yuan 27 高抗 HR 中国山西Shanxi, China 自交系 Inbred line
P867 高抗 HR 中国内蒙古Inner Mongolia, China 自交系 Inbred line
B07003 高抗 HR 中国内蒙古Inner Mongolia, China 自交系 Inbred line
52213 高抗 HR 中国内蒙古Inner Mongolia, China 自交系 Inbred line
蒙农221 Mengnong 221 高抗 HR 中国内蒙古Inner Mongolia, China 自交系 Inbred line
D642 高抗 HR 中国内蒙古Inner Mongolia, China 自交系 Inbred line
D1922 高抗 HR 中国内蒙古Inner Mongolia, China 自交系 Inbred line
07GEM02967(2) 高抗 HR 美国USA 自交系 Inbred line
07GEM02535(1) 高抗 HR 美国USA 自交系 Inbred line
07GEM02935 高抗 HR 美国USA 自交系 Inbred line
CI18 高抗 HR 墨西哥Mexico 自交系 Inbred line
CI11 高抗 HR 墨西哥Mexico 自交系 Inbred line
M98 高抗 HR 中国河北Hebei, China 农家种 Landrace
10LD 高抗 HR 中国山西Shanxi, China 农家种 Landrace
金银红苞谷 Jinyinhongbaogu 高抗 HR 中国湖北Hubei, China 农家种 Landrace
D9C2 高抗 HR 中国广西Guangxi, China 农家种 Landrace
大红包谷 Dahongbaogu 高抗 HR 中国云南Yunnan, China 农家种 Landrace
白糯玉米 Bainuoyumi 高抗 HR 中国云南Yunnan, China 农家种 Landrace
04GEM00765 高抗 HR 美国USA 农家种 Landrace
07GEM02654 高抗 HR 美国USA 农家种 Landrace
entry08 高抗 HR 墨西哥Mexico 农家种 Landrace
entry04 高抗 HR 墨西哥Mexico 农家种 Landrace

Fig. 1

Evaluation for resistance to Pythium stalk rot in 975 maize inbred lines and 235 landraces R: resistant; MR: moderately resistant; S: susceptible; HS: highly susceptible"

Table 3

Number of maize germplasm from different areas with different resistance to Pythium stalk rot"

来源
Origin
数量
No. of accessions
抗性 Resistance
高抗HR 抗R 中抗MR 感S 高感HS
中国广西Guangxi, China 10 1 2 2 3 2
中国河北Hebei, China 63 13 12 11 20 7
中国黑龙江Heilongjiang, China 38 6 5 11 3 13
中国湖北Hubei, China 1 1 0 0 0 0
中国吉林Jilin, China 34 6 6 5 9 8
中国辽宁Liaoning, China 19 8 2 7 1 1
中国内蒙古Inner Mongolia, China 325 74 40 49 95 67
中国山西Shanxi, China 158 31 23 26 38 40
中国陕西Shaanxi, China 29 6 7 5 5 6
中国上海Shanghai, China 3 0 0 3 0 0
中国云南Yunnan, China 120 11 27 26 26 30
中国贵州Guizhou, China 65 12 9 18 19 7
美国USA 164 15 12 21 62 54
墨西哥Mexico 88 13 8 7 26 34
意大利Italy 96 10 6 23 14 43
[1] 王晓鸣, 吴全安, 刘晓娟, 马国忠 . 寄生玉米的6种腐霉及其致病性研究. 植物病理学报, 1994,24:343-346
Wang X M, Wu Q A, Liu X J, Ma G Z . Identification and pathogenicity of Pythium spp. isolated from maize. Acta Phytopathol Sin, 1994,24:343-346 (in Chinese with English abstract)
[2] 吴全安, 梁克恭, 朱小阳, 王晓鸣, 金加同, 王桂跃 . 北京和浙江地区玉米青枯病病原菌的分离与鉴定. 中国农业科学, 1989,11:71-75
Wu Q A, Liang K G, Zhu X Y, Wang X M, Jin J T, Wang G Y . Isolation and identification of the pathogen of maize stalk rot in Beijing and Zhejiang. Sci Agric Sin, 1989,11:71-75 (in Chinese with English abstract)
[3] 陈捷 . 我国玉米穗、茎腐病病害研究现状与展望. 沈阳农业大学学报, 2000,31:393-401
doi: 10.3969/j.issn.1000-1700.2000.05.001
Chen J . Status and perspective on research of ear rot and stalk rot in maize. J Shenyang Agric Univ, 2000,31:393-401 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-1700.2000.05.001
[4] Shin J H, Han J H, Lee J K, Kim K S . Characterization of the maize stalk rot pathogens Fusarium subglutinans and F. temperatum and the effect of fungicides on their mycelial growth and colony formation. Plant Pathol J, 2014,30:397-406
[5] 王晓鸣, 晋齐鸣, 石洁, 王作英, 李晓 . 玉米病害发生现状与推广品种抗性对未来病害发展的影响. 植物病理学报, 2006,36:1-11
Wang X M, Jin Q M, Shi J, Wang Z Y, Li X . The status of maize diseases and the possible effect of variety resistance on disease occurrence in the future. Acta Phytopathol Sin, 2006,36:1-11 (in Chinese with English abstract)
[6] 王晓鸣, 戴法超, 朱振东, 焦志亮, 杨家秀, 李晓, 郭满库 . 玉米自交系和杂交种的抗病特性研究. 中国农业科学, 2000,33:132-140
doi: 10.3321/j.issn:0578-1752.2000.z1.022
Wang X M, Dai F C, Zhu Z D, Jiao Z L, Yang J X, Li X, Guo M K . Characteristics of disease-resistance of maize inbred lines and hybrids. Sci Agric Sin, 2000,33:132-140 (in Chinese with English abstract)
doi: 10.3321/j.issn:0578-1752.2000.z1.022
[7] 段灿星, 王晓鸣, 武小菲, 杨知还, 宋凤景, 赵立萍, 孙素丽, 朱振东 . 玉米种质和新品种对腐霉茎腐病和镰孢穗腐病的抗性分析. 植物遗传资源学报, 2015,16:947-954
Duan C X, Wang X M, Wu X F, Yang Z H, Song F J, Zhao L P, Sun S L, Zhu Z D . Analysis of maize accessions resistance to Pythium stalk rot and Fusarium ear rot. J Plant Genet Resour, 2015,16:947-954 (in Chinese with English abstract)
[8] 王富荣, 石秀清 . 玉米品种抗茎腐病鉴定. 植物保护学报, 2000,24:59-62
doi: 10.3321/j.issn:0577-7518.2000.01.012
Wang F R, Shi X Q . Identification for resistance of maize cultivars to stalk rot. J Plant Prot, 2000,24:59-62 (in Chinese with English abstract)
doi: 10.3321/j.issn:0577-7518.2000.01.012
[9] 宋燕春, 裴二芹, 石云素, 王天宇, 黎裕 . 玉米重要自交系的肿囊腐霉茎腐病抗性鉴定与评价. 植物遗传资源学报, 2012,13:798-802
doi: 10.3969/j.issn.1672-1810.2012.05.016
Song Y C, Pei E Q, Shi Y S, Wang T Y, Li Y . Identification and evaluation of resistance to stalk rot (Pythium inflatum Matthews) in important inbred lines of maize. J Plant Genet Resour, 2012,13:798-802 (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-1810.2012.05.016
[10] Young H C . The toothpick method of inoculating corn for ear and stalk rot. Phytopathology, 1943,33:16
[11] 宋佐衡, 陈捷, 刘伟成, 咸洪全, 孙秀华 . 玉米茎腐病接种方法比较. 植物保护, 1993,19:37-38
Song Z H, Chen J, Liu W C, Xian H Q, Sun X H . Comparison of inoculation method for maize stalk rot. Plant Prot, 1993,19:37-38 (in Chinese)
[12] 王晓鸣, 石洁, 晋齐鸣, 李晓, 孙世贤 . 玉米病虫害田间手册. 北京: 中国农业科学技术出版社, 2010. p 259
Wang X M, Shi J, Jin Q M, Li X, Sun S X. Field Manual of Maize Diseases and Pests. Beijing: China Agriculture Science and Technology Press, 2010. p 259 (in Chinese)
[13] 黄天述, 叶华智, 王晓鸣, 唐莉, 王晓梅, 金庆超 . 玉米种质资源对纹枯病的抗性鉴定与评价. 植物遗传资源学报, 2005,6:291-294
Huang T S, Ye H Z, Wang X M, Tang L, Wang X M, Jin Q C . Identification and evaluation of maize germplasm for resistance to corn sheath blight (Rhizoctonia solani). J Plant Genet Resour, 2005,6:291-294 (in Chinese with English abstract)
[14] 吴全安, 朱小阳, 林宏旭, 金加同, 王桂跃 . 玉米青枯病病原菌的分离及其致病性测定技术的研究. 植物病理学报, 1997,27:29-35
Wu Q A, Zhu X Y, Lin H X, Jin J T, Wang G Y . On the technique of isolation and the pathogenicity of the maize stalk rot pathogens. Acta Phytopathol Sin, 1997, 27:29-35 (in Chinese with English abstract)
[15] 程伟东, 李石初, 覃兰秋, 谭贤杰, 吴子恺 . 广西玉米种质资源对纹枯病的抗性鉴定. 植物遗传资源学报, 2009,10:566-571
Cheng W D, Li S C, Qin L Q, Tan X J, Wu Z K . Identification of resistance to sheath blight caused by Rhizoctonia solani in maize germplasm in Guangxi. J Plant Genet Resour, 2009,10:566-571 (in Chinese with English abstract)
[16] 郭成, 郭满库, 徐生军, 魏宏玉, 金社林, 赵峰 . 农家种玉米资源抗丝黑穗病鉴定与评价. 玉米科学, 2016,24(1):156-159
doi: 10.13597/j.cnki.maize.science.20160126
Guo C, Guo M K, Xu S J, Wei H Y, Jin S L, Zhao F . Identification and evaluation of maize peasant resources resistance to Sporosporium reilianum. J Maize Sci, 2016,24(1):156-159 (in Chinese with English abstract)
doi: 10.13597/j.cnki.maize.science.20160126
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[14] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[15] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!