Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (8): 1248-1255.doi: 10.3724/SP.J.1006.2018.01248

• RESEARCH NOTES • Previous Articles     Next Articles

QTL Mapping for Rice Appearance Quality Traits Based on a High-density Genetic Map in Different Environments

Qiang PENG(),Jia-Li LI(),Da-Shuang ZHANG,Xue JIANG,Ru-Yue DENG,Jian-Qiang WU,Su-Song ZHU()   

  1. Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
  • Received:2018-03-14 Accepted:2018-06-12 Online:2018-08-10 Published:2018-06-19
  • Contact: Qiang PENG,Jia-Li LI,Su-Song ZHU E-mail:450058876@163.com;lilylijiali@163.com;susongzhu@139.com
  • Supported by:
    the Science and Technology Support Project of Guizhou Province (QKHZC20182298);the Research Institution Service Enterprise Action Plan Project of Guizhou Province (QKHFQ20144005);the Science and Technology Plan Project of Guizhou Province (QKHPTRC20175719);the Modern Industry System Project of Guizhou Province(GZCYTX2017-0602);the Youth Fund Project of Guizhou Academy of Agricultural Sciences (QNKYQN201818).

Abstract:

To analyze the genetic basis of appearance quality of rice, explore QTL which controlled rice appearance quality related traits stably existing, a mapping population of 150 lines (recombination inbred lines, RIL), derived from a cross between rice varieties V20B and CPSLO17, was applied to analysis QTL location of appearance quality trait. The specific locus amplified fragment sequencing (SLAF-seq) technology was employed to construct a high-density genetic map in rice (Oryza sativa L.). A genetic map included 8602 markers on the 12 linkage groups was successfully constructed, which with an average distance of 0.29 cM between adjacent markers. The ICIM-ADD method of IciMapping 4.0 software was used to analyze QTL location for four appearance quality traits, including grain length (GL), grain width (GW), chalky grain rate, and chalkiness degree in three environmental conditions (Guiyang, Guiding, and Sanya). A total of nine QTLs for grain length (GL), six QTLs for grain width (GW), four QTLs for chalkiness size, three QTLs for chalkiness degree traits were detested in three environments. Five QTLs were repeatedly detected in multiple environments, of which the QTL qGW5-1 and qCha5-1 with the same localization interval (Marker1642127-Marker1514505 on chromosome 5) were repeatedly located in all three environments. In addition, the positioning interval of chalkiness QTL qCha5-2 (Marker1554573-Marker1554589) is the same as the chalkiness size QTL qCGP5-2. The sequence alignment found that the location interval of QTL qCha5-1 was only 51.5 kb, which was a new main effect QTL for chalkiness trait. These results lay the foundation for further exploiting candidate gene of appearance quality, which also contribute to the development of new molecular markers for rice appearance quality traits genetic improvement.

Key words: rice, appearance quality, QTL, high-density genetic map, high throughput sequencing

Fig. 1

Frequency distributions of the appearance quality traits in the RIL population under three environments GL: grain length; GW: grain width; CGP: chalky grain percentage."

Table 1

Performance of appearance quality traits in RIL populations under three environments"

性状
Trait
环境
Environment
亲本 Parents 均值
Mean
幅度
Variance
标准误
SE
偏度
Skewness
峰度
Kurtosis
W-test P-value
V20B CPSLO17
粒长
Grian length
(mm)
贵州贵阳 Guiyang, Guizhou 6.9317 7.5079 7.1104 0.3837 0.6194 0.2445 -0.4229 0.9770 0
贵州贵定 Guiding, Guizhou 6.8986 7.4041 7.0370 0.3853 0.6207 -0.0375 0.2419 0.9885 0
海南三亚 Sanya, Hainan 6.8264 7.6673 7.0589 0.3469 0.589 0.1212 -0.6511 0.9725 0
粒宽
Grain width
(mm)
贵州贵阳 Guiyang, Guizhou 2.7864 1.9939 2.4299 0.0383 0.1956 -0.005 0.1085 0.9844 0
贵州贵定 Guiding, Guizhou 2.8194 2.1133 2.4330 0.0305 0.1746 -0.4667 -0.2171 0.9588 0
海南三亚 Sanya, Hainan 2.9044 2.1920 2.5347 0.0341 0.1846 -0.3713 -0.3784 0.9602 0
垩白度
Chalkiness
(%)
贵州贵阳 Guiyang, Guizhou 23.0488 0 9.0864 81.8183 9.0453 1.0115 0.5006 0.8656 0.2495
贵州贵定 Guiding, Guizhou 23.4848 0 6.0706 54.2400 7.3648 1.5925 2.0456 0.7781 0.8978
海南三亚 Sanya, Hainan 23.4286 0 8.9570 74.5756 8.6357 1.0951 0.8017 0.8732 0.0977
垩白粒率
Chalky grain
percentage (%)
贵州贵阳 Guiyang, Guizhou 26.2500 0 14.5078 90.7359 9.5255 0.6304 1.1792 0.9337 0.6898
贵州贵定 Guiding, Guizhou 25.0000 0 10.6941 78.7201 8.8724 0.7583 -0.0918 0.8983 0.0019
海南三亚 Sanya, Hainan 25.6250 0 11.9539 71.8795 8.4782 0.7945 0.7856 0.9134 0.0030

Table 2

Coverage and number of markers for parents"

样品
Sample
SLAF数量
SLAF number
读取数
Reads number
平均深度
Average depth (×)
V20B 58473 2889072 49.41
CPSLO17 51837 2760145 53.25
合计 Total 110310 193277 51.21

Table 3

Description on basic characteristics of the 12 linkage groups"

染色体
Chr.
长度
Length (cM)
标记数量
Marker number
标记间距 Marker interval (cM) Spearman相关系数?
Spearman correlation coefficient ?
平均值 Mean 最大值 Max
1 365.11 1334 0.27 2.45 0.9996
2 184.38 818 0.23 6.00 0.9999
3 262.99 438 0.60 10.50 0.9995
4 241.09 908 0.27 3.67 0.9956
5 105.26 504 0.21 3.36 0.9996
6 363.05 1028 0.35 2.91 0.9900
7 149.03 817 0.18 3.09 0.9831
8 157.91 386 0.41 3.58 0.9996
9 130.07 525 0.25 7.04 0.9632
10 103.98 415 0.25 4.92 0.9791
11 245.23 782 0.31 2.82 0.9913
12 200.54 647 0.31 4.83 0.9978
合计 Total 2508.65 8602 0.29 10.50

Fig. 2

Distributions of identified QTL for rice appearance quality traits on genetic linkage maps"

Table 4

QTL analysis of appearance quality traits under different environments"

性状
Trait
环境Environments 基因座
QTL
染色体
Chr.
位置
Position (cM)
标记区间
Marker interval
LOD 表型贡献率PVE (%) 加性效应
Add.
粒长
Grain length
贵州贵阳Guiyang, Guizhou qGL1-2 1 361 Marker693317-Marker532394 4.13 5.87 -0.1498
qGL3-1 3 60 Marker910209-Marker823024 5.25 7.28 0.1693
qGL3-3 3 127 Marker891931-Marker771788 4.03 5.42 0.1466
qGL7-1 7 118 Marker275670-Marker347375 4.85 6.95 -0.1628
qGL8-1 8 115 Marker201080-Marker118092 17.97 31.18 0.3496
qGL8-2 8 119 Marker191958-Marker143502 7.88 11.87 -0.2175
qGL10-1 10 19 Marker34448-Marker23092 9.60 15.71 0.2592
贵州贵定Guiding,Guizhou qGL1-1 1 266 Marker587391-Marker688101 3.91 10.15 -0.1972
qGL3-2 3 63 Marker922818-Marker757283 5.08 13.38 0.2283
海南三亚
Sanya, Hainan
qGL1-2 1 361 Marker693317-Marker532394 3.05 8.10 -0.1673
qGL3-1 3 60 Marker910209-Marker823024 3.79 10.22 0.1908
粒宽
Grain width
贵州贵阳Guiyang, Guizhou qGW5-1 5 27 Marker1642127-Marker1514505 14.34 28.66 0.1051
qGW7-2 7 114 Marker343862-Marker239518 6.18 10.49 0.0632
qGW11-2 11 120 Marker1741595-Marker1645826 4.45 7.81 0.0545
贵州贵定Guiding, Guizhou qGW5-1 5 27 Marker1642127-Marker1514505 8.46 16.96 0.0721
qGW7-1 7 106 Marker322410-Marker237275 6.83 13.24 0.0638
海南三亚
Sanya, Hainan
qGW5-1 5 27 Marker1642127-Marker1514505 5.84 12.59 0.0657
qGW11-1 11 114 Marker1750082-Marker1683589 4.34 8.93 0.0550
qGW12-1 12 71 Marker1486720-Marker1380718 4.09 8.88 -0.0567
垩白度Chalkiness 贵州贵阳Guiyang, Guizhou qCha5-1 5 27 Marker1642127-Marker1514505 4.69 12.63 0.0322
贵州贵定Guiding, Guizhou qCha5-1 5 27 Marker1642127-Marker1514505 5.05 14.77 0.0284
海南三亚
Sanya, Hainan
qCha4-1 4 147 Marker403659-Marker472670 3.98 7.71 0.0241
qCha5-1 5 27 Marker1642127-Marker1514505 8.55 17.83 0.0366
qCha5-2 5 102 Marker1554573-Marker1554589 3.75 7.46 0.0241
垩白粒率Chalky grain percentage 贵州贵阳Guiyang, Guizhou qCGP2-1 2 1 Marker1152260-Marker1135261 3.91 9.95 2.9960
qCGP5-2 5 102 Marker1554573-Marker1554589 3.42 9.15 2.9475
海南三亚
Sanya, Hainan
qCGP4-1 4 149 Marker472670-Marker400717 5.01 10.66 2.7694
qCGP5-1 5 25 Marker1611496-Marker1557594 5.82 12.50 3.0122
qCGP5-2 5 102 Marker1554573-Marker1554589 5.28 11.15 2.8968
[1] 张昌泉, 赵冬生, 李钱峰, 顾铭洪, 刘巧泉 . 稻米品质性状基因的克隆与功能研究进展. 中国农业科学, 2016,49:4267-4283
doi: 10.3864/j.issn.0578-1752.2016.22.002
Zhang C Q, Zhao D S, Li Q F, Gu M H, Liu Q Q . Progresses in research on cloning and functional analysis of key genes involving in rice grain quality. Sci Agric Sin, 2016,49:4267-4283 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2016.22.002
[2] 李一博, 赵雷 . 水稻品质性状的遗传改良及其关键科学问题. 生命科学, 2016,28:1168-1179
Li Y B, Zhao L . Genetic improvement and key scientific questions of grain quality traits in rice. Chin Bull Life Sci, 2016,28:1168-1179 (in Chinese with English abstract)
[3] 江良荣, 李义珍, 王侯聪, 黄育民 . 稻米外观品质的研究进展与分子改良策略. 分子植物育种, 2003,1:243-255
Jiang L R, Li Y Z, Wang H C, Huang Y M . Research progresses on appearance quality of rice grain and strategies for its molecular improvement. Mol Plant Breed, 2003,1:243-255 (in Chinese with English abstract)
[4] 王忠华, 方振华, 干建彗 . 稻米外观品质性状遗传与分子定位研究进展. 生命科学, 2009,21:444-351
Wang Z H, Fang Z H, Gan J H . Advances in genetic research and molecular mapping of the rice grain appearance quality. Chin Bull Life Sci, 2009,21:444-351 (in Chinese with English abstract)
[5] Qiu X, Chen K, Lv W, Ou X, Zhu Y, Xing D, Yang L, Fan F, Yang J, Xu J, Zheng T, Li Z . Examining two sets of introgression lines reveals background-independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.). Theor Appl Genet, 2017,130:951-967
[6] Wan X Y, Wan J M, Weng J F, Jiang L, Bi J C, Wang C M, Zhai H Q . Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet, 2005,110:1334-1346
doi: 10.1007/s00122-005-1976-x
[7] 杨亚春, 倪大虎, 宋丰顺, 李泽福, 易成新, 杨剑波 . 不同生态地点下稻米外观品质性状的QTL定位分析. 中国水稻科学, 2011,25:43-51
doi: 10.3969/j.issn.1001-7216.2011.01.007
Yang Y C, Ni D H, Song F S, Li Z F, Yi C X, Yang J B . Identification of QTLs for rice appearance quality traits across different ecological sites. Chin J Rice Sci, 2011,25:43-51 (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-7216.2011.01.007
[8] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F . GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006,112:1164-1171
[9] Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q . Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010,107:19579-19584
doi: 10.1073/pnas.1014419107
[10] Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M . Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008,40:1023-1028
doi: 10.1038/ng.169 pmid: 18604208
[11] Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M . Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008,18:1199-1209
[12] Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C . Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants, 2015,2:15195
[13] Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q . A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015,8:1455-1465
doi: 10.1016/j.molp.2015.07.002 pmid: 26187814
[14] Song X J, Huang W, Shi M, Zhu M Z, Lin H X . A QTL for rice grain width and weight encodes a previously unknown RING type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630
doi: 10.1038/ng2014
[15] Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D . The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015,47:949-954
[16] Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q . Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015,47:944-948
doi: 10.1038/ng.3346 pmid: 26147619
[17] Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D . Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012,44:950-954
doi: 10.1038/ng.2327 pmid: 22729225
[18] Peng B, Wang L, Fan C, Jiang G, Luo L, Li Y, He Y . Comparative mapping of chalkiness components in rice using five populations across two environments. BMC Genet, 2014,15:49
[19] Zhao X, Daygon V D, McNally K L, Hamilton R S, Xie F, Reinke R F, Fitzgerald M A . Identification of stable QTLs causing chalk in rice grains in nine environments. Theor Appl Genet, 2016,129:141-153
doi: 10.1007/s00122-015-2616-8 pmid: 26498441
[20] 邱先进, 袁志华, 陈凯, 杜斌, 何文静, 杨隆维, 徐建龙, 邢丹英, 吕文恺 . 用全基因组关联分析解析籼稻垩白的遗传基础. 作物学报, 2015,41:1007-1016
doi: 10.3724/SP.J.1006.2015.01007
Qiu X J, Yuan Z H, Chen K, Du B, He W J, Yang L W, Xu J L, Xing D Y, Lyu W K . Genetic dissection of grain chalkiness in indica mini-core germplasm using genome-wide association method. Acta Agron Sin, 2015,41:1007-1016 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01007
[21] Xian J Q, Kai C, Wen K L, Xiao X O, Ya J Z, Dan Y X, Long W Y, Fang J F, Jie Y, Jian L X, Tian Q Z, Zhi K L . Examining two sets of introgression lines reveals background independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.). Theor Appl Genet, 2017,130:951-967
[22] Zhou L, Chen L, Jiang L, Zhang W, Liu L, Liu X, Zhao Z, Liu S, Zhang L, Wang J, Wan J . Fine mapping of the grain chalkiness QTL qPGWC-7 in rice(Oryza sativa L.). Theor Appl Genet, 2009,118:581-590
[23] Guo T, Liu X, Wan X, Weng J, Liu S, Liu X, Chen M, Li J, Su N, Wu F, Cheng Z, Guo X, Lei C, Wang J, Jiang L, Wan J . Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice (Oryza sativa). J Integr Plant Biol, 2011,53:598-607
[24] Gao Y, Liu C, Li Y, Zhang A, Dong G, Xie L, Zhang B, Ruan B, Hong K, Xue D, Zeng D, Guo L, Qian Q, Gao Z . QTL analysis for chalkiness of rice and fine mapping of a candidate gene for qACE9. Rice(N Y), 2016,9:41
doi: 10.1186/s12284-016-0114-5
[25] Li Y, Fan C, Xing Y, Yun P, Luo L, Yan B, Peng B, Xie W, Wang G, Li X, Xiao J, Xu C, He Y . Chalk5 encodes a vacuolar H(+)-translocating pyrophosphatase influencing grain chalkiness in rice. Nat Genet, 2014,46:398-404
[26] 胡苗, 孙志忠, 孙学武, 谭炎宁, 余东, 刘瑞芬, 袁贵龙, 丁佳, 袁定阳, 段美娟 . 利用高密度SNP标记定位水稻粒形相关QTL. 杂交水稻, 2015,30(5):54-58
doi: 10.16267/j.cnki.1005-3956.201505019
Hu M, Sun Z Z, Sun X W, Tan Y N, Yu D, Liu R F, Yuan G L, Ding J, Yuan D Y, Duan M J . Mapping of rice grain shape relevant QTLs using high-density SNP markers. Hybrid Rice, 2015,30(5):54-58 (in Chinese with English abstract)
doi: 10.16267/j.cnki.1005-3956.201505019
[27] Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H . SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One, 2013,8(3):e58700
doi: 10.1371/journal.pone.0058700
[28] Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J, Li J, Lou Q, Chen J . An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genomics, 2014,15:1158
doi: 10.1186/1471-2164-15-1158
[29] Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, Hong W, Zhang X . Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol, 2013,13:141
doi: 10.1186/1471-2229-13-141
[30] Kozich J J, Westcott S L, Baxter N T, Highlander S K, Schloss P D . Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microb, 2013,79:5112-5120
doi: 10.1128/AEM.01043-13
[31] Liu D, Ma C, Hong W, Huang L, Liu M, Liu H, Zeng H, Deng D, Xin H, Song J, Xu C, Sun X, Hou X, Wang X, Zheng H . Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS One, 2014,9(6):e98855
doi: 10.1371/journal.pone.0098855
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[3] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[4] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[5] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[6] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[7] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[8] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[9] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[10] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[11] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[12] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[13] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[14] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[15] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!