Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (8): 1248-1255.doi: 10.3724/SP.J.1006.2018.01248
• RESEARCH NOTES • Previous Articles Next Articles
Qiang PENG(),Jia-Li LI(),Da-Shuang ZHANG,Xue JIANG,Ru-Yue DENG,Jian-Qiang WU,Su-Song ZHU()
[1] |
张昌泉, 赵冬生, 李钱峰, 顾铭洪, 刘巧泉 . 稻米品质性状基因的克隆与功能研究进展. 中国农业科学, 2016,49:4267-4283
doi: 10.3864/j.issn.0578-1752.2016.22.002 |
Zhang C Q, Zhao D S, Li Q F, Gu M H, Liu Q Q . Progresses in research on cloning and functional analysis of key genes involving in rice grain quality. Sci Agric Sin, 2016,49:4267-4283 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2016.22.002 |
|
[2] | 李一博, 赵雷 . 水稻品质性状的遗传改良及其关键科学问题. 生命科学, 2016,28:1168-1179 |
Li Y B, Zhao L . Genetic improvement and key scientific questions of grain quality traits in rice. Chin Bull Life Sci, 2016,28:1168-1179 (in Chinese with English abstract) | |
[3] | 江良荣, 李义珍, 王侯聪, 黄育民 . 稻米外观品质的研究进展与分子改良策略. 分子植物育种, 2003,1:243-255 |
Jiang L R, Li Y Z, Wang H C, Huang Y M . Research progresses on appearance quality of rice grain and strategies for its molecular improvement. Mol Plant Breed, 2003,1:243-255 (in Chinese with English abstract) | |
[4] | 王忠华, 方振华, 干建彗 . 稻米外观品质性状遗传与分子定位研究进展. 生命科学, 2009,21:444-351 |
Wang Z H, Fang Z H, Gan J H . Advances in genetic research and molecular mapping of the rice grain appearance quality. Chin Bull Life Sci, 2009,21:444-351 (in Chinese with English abstract) | |
[5] | Qiu X, Chen K, Lv W, Ou X, Zhu Y, Xing D, Yang L, Fan F, Yang J, Xu J, Zheng T, Li Z . Examining two sets of introgression lines reveals background-independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.). Theor Appl Genet, 2017,130:951-967 |
[6] |
Wan X Y, Wan J M, Weng J F, Jiang L, Bi J C, Wang C M, Zhai H Q . Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet, 2005,110:1334-1346
doi: 10.1007/s00122-005-1976-x |
[7] |
杨亚春, 倪大虎, 宋丰顺, 李泽福, 易成新, 杨剑波 . 不同生态地点下稻米外观品质性状的QTL定位分析. 中国水稻科学, 2011,25:43-51
doi: 10.3969/j.issn.1001-7216.2011.01.007 |
Yang Y C, Ni D H, Song F S, Li Z F, Yi C X, Yang J B . Identification of QTLs for rice appearance quality traits across different ecological sites. Chin J Rice Sci, 2011,25:43-51 (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-7216.2011.01.007 |
|
[8] | Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F . GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006,112:1164-1171 |
[9] |
Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q . Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010,107:19579-19584
doi: 10.1073/pnas.1014419107 |
[10] |
Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M . Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008,40:1023-1028
doi: 10.1038/ng.169 pmid: 18604208 |
[11] | Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M . Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008,18:1199-1209 |
[12] | Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C . Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants, 2015,2:15195 |
[13] |
Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q . A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015,8:1455-1465
doi: 10.1016/j.molp.2015.07.002 pmid: 26187814 |
[14] |
Song X J, Huang W, Shi M, Zhu M Z, Lin H X . A QTL for rice grain width and weight encodes a previously unknown RING type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630
doi: 10.1038/ng2014 |
[15] | Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D . The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015,47:949-954 |
[16] |
Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q . Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015,47:944-948
doi: 10.1038/ng.3346 pmid: 26147619 |
[17] |
Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D . Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012,44:950-954
doi: 10.1038/ng.2327 pmid: 22729225 |
[18] | Peng B, Wang L, Fan C, Jiang G, Luo L, Li Y, He Y . Comparative mapping of chalkiness components in rice using five populations across two environments. BMC Genet, 2014,15:49 |
[19] |
Zhao X, Daygon V D, McNally K L, Hamilton R S, Xie F, Reinke R F, Fitzgerald M A . Identification of stable QTLs causing chalk in rice grains in nine environments. Theor Appl Genet, 2016,129:141-153
doi: 10.1007/s00122-015-2616-8 pmid: 26498441 |
[20] |
邱先进, 袁志华, 陈凯, 杜斌, 何文静, 杨隆维, 徐建龙, 邢丹英, 吕文恺 . 用全基因组关联分析解析籼稻垩白的遗传基础. 作物学报, 2015,41:1007-1016
doi: 10.3724/SP.J.1006.2015.01007 |
Qiu X J, Yuan Z H, Chen K, Du B, He W J, Yang L W, Xu J L, Xing D Y, Lyu W K . Genetic dissection of grain chalkiness in indica mini-core germplasm using genome-wide association method. Acta Agron Sin, 2015,41:1007-1016 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01007 |
|
[21] | Xian J Q, Kai C, Wen K L, Xiao X O, Ya J Z, Dan Y X, Long W Y, Fang J F, Jie Y, Jian L X, Tian Q Z, Zhi K L . Examining two sets of introgression lines reveals background independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.). Theor Appl Genet, 2017,130:951-967 |
[22] | Zhou L, Chen L, Jiang L, Zhang W, Liu L, Liu X, Zhao Z, Liu S, Zhang L, Wang J, Wan J . Fine mapping of the grain chalkiness QTL qPGWC-7 in rice(Oryza sativa L.). Theor Appl Genet, 2009,118:581-590 |
[23] | Guo T, Liu X, Wan X, Weng J, Liu S, Liu X, Chen M, Li J, Su N, Wu F, Cheng Z, Guo X, Lei C, Wang J, Jiang L, Wan J . Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice (Oryza sativa). J Integr Plant Biol, 2011,53:598-607 |
[24] |
Gao Y, Liu C, Li Y, Zhang A, Dong G, Xie L, Zhang B, Ruan B, Hong K, Xue D, Zeng D, Guo L, Qian Q, Gao Z . QTL analysis for chalkiness of rice and fine mapping of a candidate gene for qACE9. Rice(N Y), 2016,9:41
doi: 10.1186/s12284-016-0114-5 |
[25] | Li Y, Fan C, Xing Y, Yun P, Luo L, Yan B, Peng B, Xie W, Wang G, Li X, Xiao J, Xu C, He Y . Chalk5 encodes a vacuolar H(+)-translocating pyrophosphatase influencing grain chalkiness in rice. Nat Genet, 2014,46:398-404 |
[26] |
胡苗, 孙志忠, 孙学武, 谭炎宁, 余东, 刘瑞芬, 袁贵龙, 丁佳, 袁定阳, 段美娟 . 利用高密度SNP标记定位水稻粒形相关QTL. 杂交水稻, 2015,30(5):54-58
doi: 10.16267/j.cnki.1005-3956.201505019 |
Hu M, Sun Z Z, Sun X W, Tan Y N, Yu D, Liu R F, Yuan G L, Ding J, Yuan D Y, Duan M J . Mapping of rice grain shape relevant QTLs using high-density SNP markers. Hybrid Rice, 2015,30(5):54-58 (in Chinese with English abstract)
doi: 10.16267/j.cnki.1005-3956.201505019 |
|
[27] |
Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H . SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One, 2013,8(3):e58700
doi: 10.1371/journal.pone.0058700 |
[28] |
Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J, Li J, Lou Q, Chen J . An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genomics, 2014,15:1158
doi: 10.1186/1471-2164-15-1158 |
[29] |
Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, Hong W, Zhang X . Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol, 2013,13:141
doi: 10.1186/1471-2229-13-141 |
[30] |
Kozich J J, Westcott S L, Baxter N T, Highlander S K, Schloss P D . Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microb, 2013,79:5112-5120
doi: 10.1128/AEM.01043-13 |
[31] |
Liu D, Ma C, Hong W, Huang L, Liu M, Liu H, Zeng H, Deng D, Xin H, Song J, Xu C, Sun X, Hou X, Wang X, Zheng H . Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS One, 2014,9(6):e98855
doi: 10.1371/journal.pone.0098855 |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[3] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[4] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[5] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[6] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[7] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[8] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[9] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[10] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[11] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[12] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[13] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[14] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[15] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
|