Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (3): 431-442.doi: 10.3724/SP.J.1006.2019.83056

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Increasing spring maize yield by basic application of PASP chelating nitrogen fertilizer in northeast China

Hui-Hui TANG,Yan-Li XU,Qing-Yan WANG,Zheng-Bo MA,Guang-Yan LI,Hui DONG,Zhi-Qiang DONG()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Ecophysiology and Cultivation, Beijing 100081, China
  • Received:2018-07-22 Accepted:2018-12-25 Online:2019-03-12 Published:2019-01-07
  • Contact: Zhi-Qiang DONG E-mail:dongzhiqiang@caas.cn
  • Supported by:
    The study was supported by the National Key Research and Development Program of China(2018YFD0200608);the Horizontal Cooperation Project(2016110001000035)

Abstract:

The randomized block field experiments were conducted using maize variety of Zhongdan 909 with different nitrogen treatments of polyaspartic acid chelating nitrogen fertilizer (PASP-N) and commonly used nitrogen fertilizer (CN) in Gongzhuling Experimental Station (43o29°55°°N, 124o48°43°°E) in Jilin province in 2016 and 2017. The PASP-N increased maize yield, ear length and leaf area index (LAI) by 0.9%-3.0%, 0.5%-2.9%, and 18.5%-22.3% respectively, and decreased bare top length, plant height and ear height by 13.8%-46.7%, 1.5%-2.5%, and 0.7%-8.4%, respectively, compared with CN. Moreover, PASP-N significantly influenced activity of enzymes related to nitrogen metabolism: nitrate reductase (NR) activity decreased by 1.4%-19.8% at anthesis stage, glutamine synthetase (GS) activity increased by 18.5%-33.1% at 30 days after anthesis, and glutamic oxalacetic transaminase (GOT) activity increased by 0.8%-6.4% at 20 days after anthesis. The total nitrogen inputs of PASP-N and CN for the highest maize yield were 185.3 kg ha -1 and 219.1 kg ha -1, respectively, with 108.9 kg ha -1 higher in PASP-N treatment than in CN treatment. Nitrogen fertilizer partial productivity, agronomic efficiency, apparent utilization and physiological efficiency of nitrogen fertilizer in PASP-N treatment increased by 51.3%-54.4%, 2.9%-104.2%, 28.9%-126.6%, and 48.0%-405.2%, respectively, compared with these in CN treatments. In conclusion, PASP could enhance nitrogen metabolism during middle and late grain-filling stage, resulting in increased yield and nitrogen use efficiency in maize.

Key words: PASP, spring maize, reduction of nitrogen, nitrogen use efficiency, one-time basic fertilizer application

Table 1

Nitrogen fertilizer application amount in CN and PAPS treatment"

处理
Treatment
基施氮肥用量
Basic application amount of nitrogen (kg hm-2)
不施肥 No fertilizer CK 0
常规氮肥
Conventional N fertilizer
CN1 112.5
CN2 225.0
CN3 337.5
PASP螯合氮肥
N fertilizer coupled with PASP
PASP-N1 75.0
PASP-N2 150.0
PASP-N3 225.0

Fig. 1

Effects of CN and PASP-N treatments on maize yield A: yield in 2016; B: yield in 2017. CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm-2, 225.0 kg hm-2and 337.5 kg hm-2 respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm-2, 150.0 kg hm-2, and 225.0 kg hm-2, respectively. Value within a column yellowed by different letters are significantly different at P < 0.05."

Fig. 2

Fitting relationship between nitrogen application and maize yield for CN and PASP-N CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP."

Table 2

Effects of CN and PASP-N treatments on maize yield components"

处理
Treatment
穗长
Ear length (cm)
秃尖长
Bare tip length (cm)
穗粗
Ear diameter (mm)
穗粒数
Kernels per ear
千粒重
1000-kernel weight (g)
CK 19.3±1.2 bc 1.6±0.7 ab 45.5±1.7 b 588.1±57.4 b 273.0±15.2 ab
CN1 19.9±0.9 ab 1.2±0.4 ab 48.0±1.4 a 600.6±39.2 a 277.4±18.1 a
CN2 19.2±1.1 c 0.8±0.8 b 49.2±1.4 a 600.0±61.0 a 267.2±11.6 b
CN3 19.9±1.1 ab 2.0±1.1 a 49.0±1.5 a 623.7±43.6 a 272.0±6.9 ab
PASP-N1 20.0±1.2 a 1.0±0.7 ab 48.9±2.0 a 606.6±45.5 a 276.7±14.0 a
PASP-N2 19.8±1.1 abc 1.5±0.7 ab 48.9±1.5 a 615.9±49.8 a 267.8±12.1 b
PASP-N3 20.0±1.0 a 1.0±0.7 ab 48.3±1.6 a 604.0±37.2 a 270.7±10.8 ab

Table 3

Effects of CN and PASP-N treatments on maize dry matter accumulation"

处理
Treatment
施氮量
Nitrogen (kg hm-2)
植株干物质积累Plant dry matter accumulation (g plant-1) 收获指数
Harvest index
花前Pre-silking 花后Post-silking
CK 0 105.2±2.1 cd 156.6±33.5 c 0.6±0.1 ab
CN1 112.5 138.7±6.2 ab 191.7±7.3 bc 0.5±0.0 ab
CN2 225.0 152.1±10.8 a 216.4±11.0 b 0.6±0.0 ab
CN3 337.5 104.1±9.1 d 316.1±42.8 a 0.5±0.0 b
PASP-N1 75.0 124.2±15.7 b 206.7±12.1 b 0.6±0.0 a
PASP-N2 150.0 122.4±10.9 bc 218.1±25.3 b 0.5±0.0 ab
PASP-N3 225.0 132.4±10.9 b 180.8±27.2 bc 0.5±0.0 ab

Fig. 3

Effects of CN and PASP-N treatments on maize leaf area index CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm-2, 225.0 kg hm-2, and 337.5 kg hm-2 respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm-2, 150.0 kg hm-2, and 225.0 kg hm-2, respectively; V6: elongation period; V12: flare opening period; VT: anthesis; VT+15: 15 days after anthesis; VT+30: 30 days after anthesis; VT+45: 45 days after anthesis; R6: harvest period."

Fig. 4

Effects of CN and PASP-N treatments on maize plant height and ear height CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm-2, 225.0 kg hm-2, and 337.5 kg hm-2, respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm-2, 150.0 kg hm-2, and 225.0 kg hm-2 respectively. Value within a column yellowed by different letters are significantly different at P < 0.05."

Fig. 5

Effects of CN and PASP-N treatments on maize SPAD value CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm-2, 225.0 kg hm-2, and 337.5 kg hm-2 respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm-2, 150.0 kg hm-2, and 225.0 kg hm-2, respectively; V6: elongation period; V12: flare opening period; VT: anthesis; VT+10: 10 days after anthesis; VT+20: 20 days after anthesis; VT+30: 30 days after anthesis; VT+40: 40 days after anthesis."

Fig. 6

Effects of different CN and PASP-N on maize NR activity CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2 and CN3 denote the N application rate of 112.5 kg hm-2, 225.0 kg hm-2, and 337.5 kg hm-2, respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm-2, 150.0 kg hm-2, and 225.0 kg hm-2, respectively; VT: anthesis; VT+10: 10 days after anthesis; VT+20: 20 days after anthesis; VT+30: 30 days after anthesis; VT+40: 40 days after anthesis."

Fig. 7

Effects of CN and PASP-N on maize GS activity CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm-2, 225.0 kg hm-2, and 337.5 kg hm-2, respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm-2, 150.0 kg hm-2, and 225.0 kg hm-2, respectively; VT: anthesis; VT+10: 10 days after anthesis; VT+20: 20 days after anthesis; VT+30: 30 days after anthesis; VT+40: 40 days after anthesis."

Fig. 8

Effects of different CN and PASP-N treatments on maize GPT activity CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm-2, 225.0 kg hm-2, and 337.5 kg hm-2 respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm-2, 150.0 kg hm-2, and 225.0 kg hm-2, respectively; VT: anthesis; VT+10: 10 days after anthesis; VT+20: 20 days after anthesis; VT+30: 30 days after anthesis; VT+40: 40 days after anthesis."

Fig. 9

Effects of different CN and PASP-N on maize GOT activity CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm-2, 225.0 kg hm-2, and 337.5 kg hm-2 respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm-2, 150.0 kg hm-2, and 225.0 kg hm-2, respectively; VT: anthesis; VT+10: 10 days after anthesis; VT+20: 20 days after anthesis; VT+30: 30 days after anthesis; VT+40: 40 days after anthesis. "

Table 4

Effects of different CN and PASP-N on maize nitrogen use efficiency"

处理
Treatment
施肥量
N application rate (kg hm-2)
氮肥偏生产力
Partial factor productivity from applied N (kg kg-1)
氮肥农学效率Agronomic efficiency of applied N (kg kg-1) 氮肥表观利用率
Recovery efficiency of applied N (%)
氮肥生理利用率 Physiological efficiency of applied N (kg kg-1)
CN1 112.5 103.4±4.0 b 5.2±1.8 bc 0.6±0.1 bc 8.7±2.0 b
CN2 225.0 54.2±1.7 d 5.4±1.4 bc 0.6±0.1 bc 11.2±2.8 b
CN3 337.5 34.6±1.5 e 3.1±0.9 c 0.6±0.1 bc 3.3±1.6 c
PASP-N1 75.0 156.4±13.3 a 5.3±2.1 bc 1.3±0.0 a 4.0±1.5 c
PASP-N2 150.0 83.1±3.3 c 9.6±2.7 a 0.7±0.2 b 16.7±1.3 a
PASP-N3 225.0 53.4±2.4 d 6.3±1.1 b 0.4±0.1 c 16.5±2.2 a
[1] 曾靖, 常春华, 王雅鹏 . 基于粮食安全的我国化肥投入研究. 农业经济问题, 2010,31(5):66-70.
Zeng J, Chang C H, Wang Y P . Study on the fertilizer inputs based on China’s food security. Issues Agric Econ, 2010,31(5):66-70 (in Chinese).
[2] 李秀芬, 朱金兆, 顾晓君, 朱建军 . 农业面源污染现状与防治进展. 中国人口·资源与环境, 2010,20(4):81-84.
doi: 10.3969/j.issn.1002-2104.2010.04.014
Li X F, Zhu J Z, Gu X J, Zhu J J . Current situation and control of agricultural non-point source pollutio n. China Popul Resour Environ, 2010,20(4):81-84 (in Chinese with English abstract).
doi: 10.3969/j.issn.1002-2104.2010.04.014
[3] 王宜伦, 李潮海, 谭金芳, 张许, 刘天学 . 氮肥后移对超高产夏玉米产量及氮素吸收和利用的影响. 作物学报, 2011,37:339-347.
doi: 10.3724/SP.J.1006.2011.00339
Wang Y L, Li C H, Tan J F, Zhang X, Liu T X . Effect of postponing N application on yield, nitrogen absorption and utilization in super-high-yield summer maize. Acta Agron Sin, 2011,37:339-347 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.00339
[4] 孙浒 . 不同施氮方式对夏玉米产量和氮素利用效率的影响. 山东农业大学硕士学位论文, 山东泰安, 2014.
Sun H . Effects of Different Nitrogen Management on Yield and Nitrogen Use Efficiency of Summer Maize. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2014 (in Chinese with English abstract).
[5] Fox R H, Kern J M, Piekielek W P . Nitrogen fertilizer source, and method and time of application effects on no-till corn yields and nitrogen uptakes. Agron J, 1986,78:741-746.
doi: 10.2134/agronj1986.00021962007800040036x
[6] 吕鹏, 张吉旺, 刘伟, 杨今胜, 刘鹏, 董树亭, 李登海 . 施氮时期对超高产夏玉米产量及氮素吸收利用的影响. 植物营养与肥料学报, 2011,17:1099-1107.
doi: 10.11674/zwyf.2011.0489
Lyu P, Zhang J W, Liu W, Yang J S, Liu P, Dong S T, Li D H . Effects of nitrogen application dates on yield and nitrogen use efficiency of summer maize in super-high yield conditions. Plant Nutr Fert Sci, 2011,17:1099-1107 (in Chinese with English abstract).
doi: 10.11674/zwyf.2011.0489
[7] 夏光利, 毕军, 史桂芳, 朱国梁, 牟小翎, 董浩, 谭德水 . 分层施肥对冬小麦产量及氮素效应的影响研究. 山东农业科学, 2016,48(4):72-74.
doi: 10.14083/j.issn.1001-4942.2016.04.017
Xia G L, Bi J, Shi G F, Zhu G L, Mou X L, Dong H, Tan D S . Effects of layered fertilization on yield and nitrogen effect of winter wheat. Shandong Agric Sci, 2016,48(4):72-74 (in Chinese with English abstract).
doi: 10.14083/j.issn.1001-4942.2016.04.017
[8] 高凤菊, 吕金岭 . 尿素深施对小麦产量及氮肥利用率的影响. 山东农业科学, 2006, ( 3):48-49.
doi: 10.3969/j.issn.1001-4942.2006.03.017
Gao F J, Lyu J L . Effects of urea depth on wheat yield and nitrogen utilization rate. Shandong Agric Sci, 2006, ( 3):48-49 (in Chinese).
doi: 10.3969/j.issn.1001-4942.2006.03.017
[9] 黄庆裕, 蒲才潮 . 碳酸氢铵全层深施对水稻的增产效果. 土壤肥料, 2006, ( 1):60-61.
doi: 10.11838/sfsc.20060116
Huang Q Y, Pu C C . Effects of full depth of ammonium bicarbonate on rice yield. Soil Fert Sci, 2006, ( 1):60-61 (in Chinese).
doi: 10.11838/sfsc.20060116
[10] 张文玲, 王文科, 李桂花 . 施肥方式对不同小麦品种生长和氮肥利用率的影响. 中国土壤与肥料, 2009, ( 2):47-51.
doi: 10.11838/sfsc.20090211
Zhang W L, Wang W K, Li G H . Effects of different applying methods on nitrogen use efficiency and growth of different wheat varieties. China Soils Fert, 2009, ( 2):47-51 (in Chinese with English abstract).
doi: 10.11838/sfsc.20090211
[11] 李殿平, 曹海峰, 张俊宝, 金学泳 . 全程深施肥对水稻产量形成及稻米品质的影响. 中国水稻科学, 2006,20:73-78.
doi: 10.3321/j.issn:1001-7216.2006.01.013
Li D P, Cao H F, Zhang J B, Jin X Y . Effect of deep application of fertilizer in the whole growing period on yield formation and quality of rice. Chin J Rice Sci, 2006,20:73-78 (in Chinese with English abstract).
doi: 10.3321/j.issn:1001-7216.2006.01.013
[12] 王应君, 王淑珍, 郑义 . 肥料深施对小麦生育性状、养分吸收及产量的影响. 中国农学通报, 2006,22(9):276-280.
doi: 10.3969/j.issn.1000-6850.2006.09.068
Wang Y J, Wang S Z, Zheng Y . Effects of deep application of fertilizer on growth character, absorption of nutrition and yield in wheat. Chin Agric Sci Bull, 2006,22(9):276-280 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-6850.2006.09.068
[13] Rees R M, Roelcke M, Li S X . The effect of fertilizer placement on nitrogen uptake and yield of wheat and maize in Chinese loess soils. Nutr Cycl Agroecosys, 1996,47:81-91.
doi: 10.1007/BF01985721
[14] 徐秋明, 曹兵, 牛长青, 付铁梅 . 包衣尿素在田间的溶出特征和对夏玉米产量及氮肥利用率影响的研究. 土壤通报, 2005, ( 3):357-359.
doi: 10.3321/j.issn:0564-3945.2005.03.017
Xu Q M, Cao B, Niu C Q, Fu T M . Nutrient release characteristics of coated urea under field condition and inf1uence on summer corns yield and nitrogen utilization efficiency. Chin J Soil Sci, 2005, ( 3):357-359 (in Chinese with English abstract).
doi: 10.3321/j.issn:0564-3945.2005.03.017
[15] 易镇邪, 王璞, 陈平平, 屠乃美 . 氮肥类型对夏玉米氮素吸收和利用的影响. 植物营养与肥料学报, 2008,14:472-478.
doi: 10.3321/j.issn:1008-505X.2008.03.010
Yi Z X, Wang P, Chen P P, Tu N M . Effects of different types of nitrogen fertilizer on nitrogen absorption and utilization of summer maize ( Zea mays L.). Plant Nutr Fert Sci, 2008,14:472-478 (in Chinese with English abstract).
doi: 10.3321/j.issn:1008-505X.2008.03.010
[16] 王利纳, 陶洪斌, 戴明宏, 王彩彩, 冯烁, 王璞 . 包膜尿素对夏玉米产量及碳氮代谢的影响. 玉米科学, 2009,17(2):124-129.
Wang L N, Tao H B, Dai M H, Wang C C, Feng S, Wang P . Effect of coated urea on grain yield and carbon-nitrogen metabolism of summer maize. J Maize Sci, 2009,17(2):124-129 (in Chinese with English abstract).
[17] 吕娇, 李淑敏, 潘明阳, 刘昕昕 . 不同包膜控释氮肥对玉米氮素吸收和产量的影响. 天津农业科学, 2012,18(1):46-50.
doi: 10.3969/j.issn.1006-6500.2012.01.011
Lyu J, Li S M, Pan M Y, Liu X X . Effect of different controlled-release n fertilizers on nitrogen absorption and yield of maize. Tianjin Agric Sci, 2012,18(1):46-50 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-6500.2012.01.011
[18] 付永强 . 尿素类型和施用量对玉米氮素吸收利用与产量形成的影响. 四川农业大学硕士论文, 四川成都, 2015.
Fu Y Q . Effects or Type and Application Rate of Urea on Yield and Nitrogen Utilization of Maize. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2015 (in Chinese with English abstract).
[19] 陈贤友, 吴良欢, 韩科峰, 李金先, 应金耀 . 包膜尿素和普通尿素不同掺混比例对水稻产量与氮肥利用率的影响. 植物营养与肥料学报, 2010,16:918-923.
doi: 10.11674/zwyf.2010.0421
Chen X Y, Wu L H, Han K F, Li J X, Ying J Y . Effects of different mixture rates of coated urea and prilled urea on rice grain yield and nitrogen use efficiency. Plant Nutr Fert Sci, 2010,16:918-923 (in Chinese with English abstract).
doi: 10.11674/zwyf.2010.0421
[20] 串丽敏, 安志装, 杜连凤, 赵同科, 李顺江 . 脲酶/硝化抑制剂对壤质潮土氮素淋溶影响的模拟研究. 中国农业科学, 2011,44:4007-4014.
doi: 10.3864/j.issn.0578-1752.2011.19.010
Chuan L M, An Z Z, Du L F, Zhao T K, Li S J . Effects of urease/nitrification inhibitor on soil nitrogen leaching loss in loamy fluvo-aquic soil. Sci Agric Sin, 2011,44:4007-4014 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2011.19.010
[21] 黄益宗, 冯宗炜, 王效科, 张福珠 . 硝化抑制剂在农业上应用的研究进展. 土壤通报, 2002,33:310-315.
doi: 10.3321/j.issn:0564-3945.2002.04.019
Huang Y Z, Feng Z W, Wang X K, Zhang F Z . Research progress of nitrification inhibitors applied in agriculture. Chin J Soil Sci, 2002,33:310-315 (in Chinese with English abstract).
doi: 10.3321/j.issn:0564-3945.2002.04.019
[22] 余光辉, 张杨珠, 万大娟 . 几种硝化抑制剂对土壤和小白菜硝酸盐含量及产量的影响. 应用生态学报, 2006,17:247-250.
Yu G H, Zhang Y Z, Wan D J . Effects of nitrification inhibitors on nitrate content in soil and pakchoi and on pakchoi yield. Chin J Appl Ecol, 2006,17:247-250 (in Chinese with English abstract).
[23] 倪秀菊, 李玉中, 徐春英, 李巧珍 . 土壤脲酶抑制剂和硝化抑制剂的研究进展. 中国农学通报, 2009,25(12):145-149.
Ni X J, Li Y Z, Xu C Y, Li Q Z . Advance of research on urease inhibitor and nitrification inhibitor in soil. Chin Agric Sci Bull, 2009,25(12):145-149 (in Chinese with English abstract).
[24] 李燕燕, 朱孔杰, 张源 . 聚天冬氨酸合成及农业上的应用研究进展. 广东化工, 2015,42(15):141-142.
Li Y Y, Zhu K J, Zhang Y . Research progress on the synthesis and application of polyaspartic acid in agriculture. Guangdong Chem Eng, 2015,42(15):141-142 (in Chinese with English abstract).
[25] 黄启亮, 韩广泉, 侯红燕, 乔彭蕾, 谢全喜, 张建梅 . 土壤肥料增效剂——聚天门冬氨酸研究现状及应用前景. 农村经济与科技, 2015, ( 4):62-63.
doi: 10.3969/j.issn.1007-7103.2015.04.025
Huang Q L, Han G Q, Hou H Y, Qiao P L, Xie Q X, Zhang J M . Research status and application prospect of soil fertilizer synergist—polyaspartic acid. Rural Econ Sci Tech, 2015, ( 4):62-63 (in Chinese).
doi: 10.3969/j.issn.1007-7103.2015.04.025
[26] 杜中军, 杨浩, 王树昌, 徐立, 王炳, 王康林, 李松刚, 罗海燕 . 农用聚天门冬氨酸同源多肽研究进展. 热带作物学报, 2011,32:2381-2384.
doi: 10.3969/j.issn.1000-2561.2011.12.037
Du Z J, Yang H, Wang J C, Xu L, Wang B, Wang K L, Li S G, Luo H Y . Advance of homologous polypeptides polyaspartic acids for agriculture. Chin J Trop Crops, 2011,32:2381-2384 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-2561.2011.12.037
[27] 谢方淼, 李东坡, 李健强, 蔡典雄 . 聚天冬氨酸尿素对土壤微生物量碳、氮的影响. 中国土壤与肥料, 2011, ( 4):8-12.
doi: 10.11838/sfsc.20110403
Xie F M, Li D P, Li J Q, Cai D X . Effects of polyaspartic urea (PASP-Urea) on soil microbial biomass carbon and nitrogen under incubation and pot experiment. China Soils Fert, 2011, ( 4):8-12 (in Chinese with English abstract).
doi: 10.11838/sfsc.20110403
[28] 杜中军, 杨浩, 王永造, 罗海燕, 徐立, 王康林, 王炳 . 聚天门冬氨酸同源多肽的水稻产量效应和磷素营养吸收效应研究. 现代农业科技, 2012, ( 18):12-13.
doi: 10.3969/j.issn.1007-5739.2012.18.002
Du Z J, Yang H, Wang Y H, Luo H Y ,Xu l, Wang K L, Wang B . Effects on yield and phosphorus nutrition absorbing for rice using homologous polypeptides of polyaspartic acids. Modern Agric Sci Tech, 2012, ( 18):12-13 (in Chinese with English abstract).
doi: 10.3969/j.issn.1007-5739.2012.18.002
[29] 张琳, 左强, 邹国元 . 施用不同水平聚天门冬氨酸对油菜生长的影响. 黑龙江农业科学, 2013, ( 12):27-29.
doi: 10.3969/j.issn.1002-2767.2013.12.008
Zhang L, Zuo Q, Zou G Y . Effects of polyaspartic acid with different levels on growth of Brassica campestrris L. Heilongjiang Agric Sci, 2013, ( 12):27-29 (in Chinese with English abstract).
doi: 10.3969/j.issn.1002-2767.2013.12.008
[30] 雷全奎, 杨小兰, 马雯场, 姜秋会 . 聚天门冬氨酸对土壤理化性状的影响. 陕西农业科学, 2007, ( 3):75-76.
doi: 10.3969/j.issn.0488-5368.2007.03.025
Lei Q K, Yang X L, Ma W C, Jiang Q H . Effects of polyaspartic acid on physicochemical properties of soil. Shaanxi Agric Sci, 2007, ( 3):75-76 (in Chinese with English abstract).
doi: 10.3969/j.issn.0488-5368.2007.03.025
[31] 程凤娴, 官利兰, 邓兰生, 涂攀峰, 龚林, 张承林 . 聚天门冬氨酸对玉米生长的影响. 安徽农业科学, 2015,43(4):105-106.
Cheng F X, Guan L L, Deng L S, Tu P F, Gong L, Zhang C L . Effects of polyaspartic acid on maize growth. Anhui Agric Sci, 2015,43(4):105-106 (in Chinese with English abstract).
[32] 侯晓娜 . 黄腐酸和聚天冬氨酸对蔬菜氮素吸收及肥料氮转化的影响. 中国农业科学院硕士学位论文, 北京, 2013.
Hou X N . Effects of Fulvic Acid and Polyaspartic Acid on Nitrogen Uptake of Vegetables and Transformation of Fertilizer Nitrogen. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2013 (in Chinese with English abstract).
[33] Moll R H, Kamprath E J, Jackson W A . Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J, 1982,74:562-564.
doi: 10.2134/agronj1982.00021962007400030037x
[34] 李潮海, 刘奎, 周苏玫, 栾丽敏 . 不同施肥条件下夏玉米光合对生理生态因子的响应. 作物学报, 2002,28:265-269.
doi: 10.3321/j.issn:0496-3490.2002.02.023
Li C H, Liu K, Zhou S M, Luan L M . Response of photosynthesis to eco-physiological factors of summer maize on different fertilizer amounts. Acta Agron Sin, 2002,28:265-269 (in Chinese with English abstract).
doi: 10.3321/j.issn:0496-3490.2002.02.023
[35] 李合生 . 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 95-100.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiment. Beijing: Higher Education Press, 2000. pp 95-100(in Chinese).
[36] 邹琦 . 植物生理学实验指导. 北京: 中国农业出版社, 2000. pp 56- 59, 125-126.
Zou Q. Experiment Guide for Plant Physiology. Beijing: China Agriculture Press, 2000. pp 56- 59, 125-126(in Chinese).
[37] 吴良欢, 蒋式洪, 陶勤南 . 植物转氨酶活度比色测定方法及其应用. 土壤通报, 1998,29(3):136-138.
Wu L H, Jiang S H, Tao Q N . Colorimetric determination of glutamate oxaloacetate transaminase and glutamate pyruvate transaminase activity in plants and its application. Chin J Soil Sci, 1998,29(3):136-138 (in Chinese).
[38] 冷一欣, 芮新生, 何佩华 . 施用聚天冬氨酸增加玉米产量的研究. 玉米科学, 2005,13(3):102-104.
doi: 10.3969/j.issn.1005-0906.2005.03.032
Leng Y X, Rui X S, He P H . Study of the yield increasing of maize by using polyaspartic acid. J Maize Sci, 2005,13(3):102-104 (in Chinese with English abstract).
doi: 10.3969/j.issn.1005-0906.2005.03.032
[39] 张洪生, 井涛, 赵美爱, 姜雯 . 聚天冬氨酸和保水剂对干旱条件下玉米幼苗生长的影响. 中国农学通报, 2013,29(6):59-62.
doi: 10.3969/j.issn.1000-6850.2013.06.011
Zhang H S, Jing T, Zhao A M, Jiang W . Effects of polyaspartic acid (PASP) and water-retention agent on the growth in maize ( Zea mays L.) at seedling stage under water deficit condition. Chin Agric Sci Bull, 2013,29(6):59-62 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-6850.2013.06.011
[40] 姜雯, 周登博, 张洪生, 张延胜 . 不同施肥水平下聚天冬氨酸对玉米幼苗生长的影响. 玉米科学, 2007,15(5):121-124.
doi: 10.3969/j.issn.1005-0906.2007.05.031
Jiang W, Zhou D B, Zhang H S, Zhang Y S . The Effect of polyaspartic acid on maize growth at seedling stage under different fertilizer applied condition. J Maize Sci, 2007,15(5):121-124 (in Chinese with English abstract).
doi: 10.3969/j.issn.1005-0906.2007.05.031
[41] 许峰, 沈剑, 赖清云 . 聚天冬氨酸在水稻生产中的应用研究. 现代农业科技, 2011, ( 6):305-306.
doi: 10.3969/j.issn.1007-5739.2011.06.196
Xu F, Shen J, Lai Q Y . The applied study of polyaspartic acid in rice production. Modern Agric Sci Tech, 2011, ( 6):305-306 (in Chinese).
doi: 10.3969/j.issn.1007-5739.2011.06.196
[42] Deng F, Wang L, Ren W J, Mei X F, Li S X . Optimized nitrogen managements and polyaspartic acid urea improved dry matter production and yield of indica hybrid rice. Soil Tillage Res, 2015,145:1-9.
doi: 10.1016/j.still.2014.08.004
[43] Deng F, Wang L, Ren W J, Mei X F . Enhancing nitrogen utilization and soil nitrogen balance in paddy fields by optimizing nitrogen management and using polyaspartic acid urea. Field Crops Res, 2014,169:30-38.
doi: 10.1016/j.fcr.2014.08.015
[44] 朱凌宇, 徐荣, 张家宏, 寇祥明, 王宏凯, 陈雷, 王守红, 王桂良, 韩光明, 毕建花, 唐鹤军 . 聚天冬氨酸增效复合肥在小麦上的应用效果. 江苏农业科学, 2016,44(6):132-134.
doi: 10.15889/j.issn.1002-1302.2016.06.034
Zhu L Y, Xu R, Zhang J H, Kou X M, Wang H K, Chen L, Wang S H, Wang G L, Han G M, Bi J H, Tang H J . Effect of polyaspartic acid compound fertilizer on wheat. Jiangsu Agric Sci, 2016,44(6):132-134 (in Chinese).
doi: 10.15889/j.issn.1002-1302.2016.06.034
[45] 侯晓娜, 王旭 . 黄腐酸和聚天冬氨酸对蕹菜氮素吸收及氮肥去向的影响. 中国土壤与肥料, 2014, ( 1):48-52.
doi: 10.11838/sfsc.20140111
Hou X N, Wang X . Effects of fulvic acid and polyaspartic acid on nitrogen uptake and fate of nitrogen fertilizer in water spinach. China Soils Fert, 2014, ( 1):48-52 (in Chinese with English abstract).
doi: 10.11838/sfsc.20140111
[46] 张弓长, 蔡虎铭, 钱程, 刘广富 . 水溶肥中添加聚天冬氨酸和黄腐酸钾对芹菜产量及经济效益的影响. 安徽农业科学, 2016,44(33):103-105.
doi: 10.3969/j.issn.0517-6611.2016.33.032
Zhang G C, Cai H M, Qian C, Liu G F . Effects of water soluble fertilizers on the yield and economic benefits of celery by adding polyaspartic acid and fulvic acid potassium. Anhui Agric Sci, 2016,44(33):103-105 (in Chinese with English abstract).
doi: 10.3969/j.issn.0517-6611.2016.33.032
[47] 陈倩, 李洪娜, 门永阁, 魏绍冲, 姜远茂 . 不同聚天冬氨酸水平对盆栽平邑甜茶幼苗生长及 15N-尿素利用与损失的影响 . 水土保持学报, 2013,27(1):126-129.
Chen Q, Li H N, Men Y G, Wei S C, Jiang Y M . Effects on the growth of potted Malus hupehensis Rehd. seedings, utilization and loss of 15N-urea under different supply levels of polyaspartic acid. J Soil Water Conserv , 2013,27(1):126-129 (in Chinese with English abstract).
[48] 黄毅, 李衍素, 贺超兴, 于贤昌 . 根施聚天门冬氨酸对日光温室黄瓜生长、产量及矿质元素吸收的影响. 中国蔬菜, 2018, ( 1):44-49.
Huang Y, Li Y S, He C X, Yu X C . Effect of polyaspartic acid root application on growth, yield and mineral elements absorption of cucumber grown in solar greenhouse. China Veget, 2018, ( 1):44-49 (in Chinese with English abstract).
[49] 孙克刚, 张运红, 杜君, 和爱玲, 陈剑秋, 张强 . 尿素添加不同增效剂对夏玉米产量及氮肥利用率的影响. 中国土壤与肥料, 2017, ( 1):45-47.
Sun K G, Zhang Y H, Du J, He A L, Chen J Q, Zhang Q . Effects of urea added with different fertilizer synergists on maize yield and nitrogen use efficiency. China Soils Fert, 2017, ( 1):45-47 (in Chinese with English abstract).
[50] 高娇, 董志强, 徐田军, 陈传晓, 焦浏, 卢霖, 董学瑞 . 聚糠萘水剂对低温胁迫玉米幼苗氮代谢酶活的调控效应. 玉米科学, 2013,21(4):48-54.
doi: 10.3969/j.issn.1005-0906.2013.04.011
Gao J, Dong Z Q, Xu T J, Chen C X, Jiao L, Lu L, Dong X R . Effects of PASP-KT-NAA on nitrogen metabolism enzyme activities of maize seedlings under low temperature stress. J Maize Sci, 2013,21(4):48-54 (in Chinese with English abstract).
doi: 10.3969/j.issn.1005-0906.2013.04.011
[51] 高娇, 董志强, 徐田军, 陈传晓, 焦浏, 卢霖, 董学瑞 . 聚糠萘水剂对不同积温带玉米花后叶片氮同化的影响. 生态学报, 2014,34:2938-2947.
doi: 10.5846/stxb201212101773
Gao J, Dong Z Q, Xu T J, Chen C X, Jiao L, Lu L, Dong X R . Effects of PASP-KT-NAA on maize leaf nitrogen assimilation after lorescence over different temperature gradients. Acta Ecol Sin, 2014,34:2938-2947 (in Chinese with English abstract).
doi: 10.5846/stxb201212101773
[52] 陈传晓, 董志强, 高娇, 徐田军, 焦浏, 卢霖, 张凤路 . 聚糠萘水剂对不同积温带春玉米灌浆期光合性能的影响. 玉米科学, 2013,21(3):66-70.
doi: 10.3969/j.issn.1005-0906.2013.03.013
Chen C X, Dong Z Q, Gao J, Xu T J, Jiao L, Lu L, Zhang F L . Effects of PASP-KT-NAA on the photosynthetic performances of different maize cultivars in different accumulated temperature zones. J Maize Sci, 2013,21(3):66-70 (in Chinese with English abstract).
doi: 10.3969/j.issn.1005-0906.2013.03.013
[53] 徐田军, 董志强, 高娇, 陈传晓, 焦浏, 解振兴 . 聚糠萘水剂对不同积温带玉米叶片衰老和籽粒灌浆速率的影响. 作物学报, 2012,38:1698-1709.
doi: 10.3724/SP.J.1006.2012.01698
Xu T J, Dong Z Q, Gao J, Chen C X, Jiao L, Xie Z X . Effect of PASP-KT-NAA on leaf senescence and grain filling rate during the grain-filling period in different temperature zones. Acta Agron Sin, 2012,38:1698-1709 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.01698
[54] Ferrario-Méry S, Masclaux C, Suzuki A, Valadier M H, Hirel B, Foyer C H . Glutamine and alpha-ketoglutarate are metabolite signals involved in nitrate reductase gene transcription in untransformed and transformed tobacco plants deficient in ferredoxin-glutamine-alpha-ketoglutaate aminotransferase. Planta, 2001,213:265-271.
doi: 10.1007/s004250000504
[55] Miflin B, Habash D . The role of glutamine synthetase and gluta-mate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot, 2002,53:979-987.
doi: 10.1093/jexbot/53.370.979 pmid: 11912240
[56] Daubresse C M, Carrayol E, Valadier M H . The two nitrogen mobilisation and senescence-associated GS1 and GDH genes are controlled by C and N metabolites. Planta, 2005,221:580-588.
doi: 10.1007/s00425-004-1468-2
[57] Bernard S M, Habash D Z . The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol, 2009,182:608-620.
doi: 10.1111/j.1469-8137.2009.02823.x pmid: 19422547
[58] Meng Q F, Chen X P, Zhang F S, Cao M H, Cui Z L, Bai J S, Yue S C, Chen S Y, Muller T . In-season root-zone nitrogen management strategies for improving nitrogen use efficiency in high-yielding maize production in China. Pedosphere, 2012,22:294-303.
doi: 10.1016/S1002-0160(12)60016-2
[1] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[2] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[3] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[4] GAO Zhen, LIANG Xiao-Gui, ZHANG Li, ZHAO Xue, DU Xiong, CUI Yan-Hong, ZHOU Shun-Li. Effects of irrigating at different growth stages on kernel number of spring maize in the North China Plain [J]. Acta Agronomica Sinica, 2021, 47(7): 1324-1331.
[5] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[6] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
[7] ZHU Ya-Li, WANG Chen-Guang, YANG Mei, ZHENG Xue-Hui, ZHAO Cheng-Feng, ZHANG Ren-He. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density [J]. Acta Agronomica Sinica, 2021, 47(3): 507-519.
[8] HUANG Heng, JIANG Heng-Xin, LIU Guang-Ming, YUAN Jia-Qi, WANG Yuan, ZHAO Can, WANG Wei-Ling, HUO Zhong-Yang, XU Ke, DAI Qi-Gen, ZHANG Hong-Cheng, LI De-Jian, LIU Guo-Lin. Effects of side deep placement of nitrogen on rice yield and nitrogen use efficiency [J]. Acta Agronomica Sinica, 2021, 47(11): 2232-2249.
[9] LIU Peng-Zhao,SHI Zu-Jiao,NING Fang,WANG Rui,WANG Xiao-Li,LI Jun. Critical nitrogen dilution curves and nitrogen nutrition diagnosis of spring maize under different precipitation patterns in Weibei dryland [J]. Acta Agronomica Sinica, 2020, 46(8): 1225-1237.
[10] LI Rui-Jie,TANG Hui-Hui,WANG Qing-Yan,XU Yan-Li,WANG Qi,LU Lin,YAN Peng,DONG Zhi-Qiang,ZHANG Feng-Lu. Effects of 5-aminolevulinic acid and ethephon compound on carbon balance of source-sink of spring maize in Northeast China [J]. Acta Agronomica Sinica, 2020, 46(7): 1063-1075.
[11] ZHANG Yu-Qin,YANG Heng-Shan,LI Cong-Feng,ZHAO Ming,LUO Fang,ZHANG Rui-Fu. Effects of strip-till with staggered planting on yield formation and shoot-root characteristics of spring maize in irrigation area of Xiliaohe plain [J]. Acta Agronomica Sinica, 2020, 46(6): 902-913.
[12] LUO Wen-He, SHI Zu-Jiao, WANG Xu-Min, LI Jun, WANG Rui. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat [J]. Acta Agronomica Sinica, 2020, 46(6): 924-936.
[13] Wei BAI,Zhan-Xiang SUN,Li-Zhen ZHANG,Jia-Ming ZHENG,Liang-Shan FENG,Qian CAI,Wu-Yan XIANG,Chen FENG,Zhe ZHANG. Effects of plough layer construction on soil three phase rate and root morphology of spring maize in northeast China [J]. Acta Agronomica Sinica, 2020, 46(5): 759-771.
[14] Lei ZHOU,Qiu-Yuan LIU,Jin-Yu TIAN,Meng-Hua ZHU,Shuang CHENG,Yang CHE,Zhi-Jie WANG,Zhi-Peng XING,Ya-Jie HU,Guo-Dong LIU,Hai-Yan WEI,Hong-Cheng ZHANG. Differences in yield and nitrogen absorption and utilization of indica-japonica hybrid rice varieties of Yongyou series [J]. Acta Agronomica Sinica, 2020, 46(5): 772-786.
[15] Zhi-Yuan YANG,Na LI,Peng MA,Tian-Rong YAN,Yan HE,Ming-Jin JIANG,Teng-Fei LYU,Yu LI,Xiang GUO,Rong HU,Chang-Chun GUO,Yong-Jian SUN,Jun MA. Effects of methodical nitrogen-water distribution management on water and nitrogen use efficiency of rice [J]. Acta Agronomica Sinica, 2020, 46(3): 408-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!