Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (8): 1176-1188.doi: 10.3724/SP.J.1006.2019.84155

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development of SSR markers and genetic diversity analysis in mung bean

YE Wei-Jun,CHEN Sheng-Nan,YANG Yong,ZHANG Li-Ya,TIAN Dong-Feng,ZHANG Lei,ZHOU Bin()   

  1. Crop Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China
  • Received:2018-11-21 Accepted:2019-01-19 Online:2019-08-12 Published:2019-03-16
  • Contact: Bin ZHOU E-mail:18756019871@139.com
  • Supported by:
    This study was supported by the Research Program of Anhui Academy of Agricultural Sciences(18T0206);the China Agriculture Research System(CARS-08-Z11);the National Key Research and Development Program(2016YFE0203800)

Abstract:

SSR markers play an important role in basic research and crop breeding due to their advantages of large number, high polymorphism and co-dominant inheritance. However, there are still few SSR markers available in mung bean. In this study, the magnetic bead enrichment method and sequencing technology were combined to identify the SSR loci of mung bean in high throughput, a total of 3,275,355 SSR loci were found, and 2742 markers were developed. A total of 157 markers were selected for validation by PCR method, 90 (57.33%) showed polymorphic among 10 mung bean accessions. Forty SSR markers with clear PCR products, high polymorphism and uniform distribution on chromosomes were selected to evaluate the genetic diversity among 90 mung bean accessions. The number of alleles per marker varied from two to eight, with an average of three. The effective number of alleles ranged from 1.31 to 4.21, with a mean value of 2.16. The Nei’s gene diversity was between 0.23 and 0.76, with an average of 0.51. Polymorphism information content was between 0.22 and 0.72, with a mean of 0.43. Cluster analysis distributed 90 materials into two clusters, including four groups. The germplasm of group II came from several areas, while those of groups I and III were mainly from North China and Shandong province, respectively. Most of the gerplasm from Hebei province were clustered in Group IV. These polymorphic SSR markers will be valuable for genetic diversity analysis, high-resolution genetic linkage maps construction, gene mapping and marker assisted selection in mung bean breeding.

Key words: mung bean, sequencing, SSR, primer design, genetic diversity

Table 1

Information of mung bean resources"

编号
No.
名称
Name
来源地
Origin
编号
No.
名称
Name
来源地
Origin
编号
No.
名称
Name
来源地
Origin
1 安阳01-2 河南 31 科绿1号 内蒙古 61 潍绿11 山东
Anyang 01-2 Henan Kelyu 1 Inner Mongolia Weilyu 11 Shandong
2 白绿10号 吉林 32 辽绿10L708-5 辽宁 62 潍绿12 山东
Bailyu 10 Jilin Liaolyu 10L708-5 Liaoning Weiyu 12 Shandong
3 白绿11号 吉林 33 辽绿10号 辽宁 63 潍绿4号 山东
Bailyu 11 Jilin Liaolyu 10 Liaoning Weilyu 4 Shandong
4 白绿9号 吉林 34 庐绿2号 安徽 64 潍绿5号 山东
Bailyu 9 Jilin Lulyu 2 Anhui Weilyu 5 Shandong
5 宝绿1号 河北 35 嫩绿2号 黑龙江 65 潍绿7号 山东
Baolyu 1 Hebei Neilyu 2 Heilongjiang Weilyu 7 Shandong
6 保942 河北 36 品绿08116 北京 66 潍绿8号 山东
Bao 942 Hebei Pinlyu 08116 Beijing Weilyu 8 Shandong
7 保绿200403 河北 37 品绿2011-06 北京 67 潍绿9号 山东
Baolyu 200403 Hebei Pinlyu 2011-06 Beijing Weilyu 9 Shandong
8 保绿200520 河北 38 品绿2011-12 北京 68 鹦哥绿 河北
Baolyu 200520 Hebei Pinlyu 2011-12 Beijing Yinggelyu Hebei
9 保绿200621 河北 39 品绿21599 北京 69 渝黑绿3号 重庆
Baolyu 200621 Hebei Pinlyu 21599 Beijing Yuheilyu 3 Chongqing
10 保绿200810 河北 40 苏抗4号 江苏 70 渝绿2号 重庆
Baolyu 200810 Hebei Sukang 4 Jiangsu Yulyu 2 Chongqing
11 保绿201012-7 河北 41 苏黑2号 江苏 71 郑绿10号 河南
Baolyu 201012-7 Hebei Suhei 2 Jiangsu Zhenglyu 10 Henan
12 鄂1001 湖北 42 苏抗1号 江苏 72 郑绿8号 河南
E 1001 Hebei Sukang 1 Jiangsu Zhenglyu 8 Henan
13 鄂绿5号 湖北 43 苏抗3号 江苏 73 中绿10号 北京
Elyu 5 Hubei Sukang 3 Jiangsu Zhonglyu 10 Beijing
14 皇藏峪绿豆 安徽 44 苏绿11-4 江苏 74 中绿11号 北京
Huangcangyu mungbean Anhui Sulyu 11-4 Jiangsu Zhonglyu 11 Beijing
15 吉林绿豆 吉林 45 苏绿12-5 江苏 75 中绿12号 北京
Jilin mung bean Jilin Sulyu 12-5 Jiangsu Zhonglyu 12 Beijing
16 吉绿5号 吉林 46 苏绿15-11 江苏 76 中绿14号 北京
Jilyu 5 Jilin Sulyu 15-11 Jiangsu Zhonglyu 14 Beijing
17 吉绿6号 吉林 47 苏绿16-10 江苏 77 中绿1号 北京
Jilyu 6 Jilin Sulyu 16-10 Jiangsu Zhonglyu 1 Beijing
18 冀黑绿45-1 河北 48 苏绿1号 江苏 78 中绿3号 北京
Jiheilyu 45-1 Hebei Sulyu 1 Jiangsu Zhonglyu 3 Beijing
19 冀绿0204 河北 49 苏绿2号 江苏 79 中绿5号 北京
Jilyu 0204 Hebei Sulyu 2 Jiangsu Zhonglyu 5 Beijing
20 冀绿0514 河北 50 苏绿4号 江苏 80 中绿8号 北京
Jilyu 0514 Hebei Sulyu 4 Jiangsu Zhonglyu 8 Beijing
21 冀绿0816 河北 51 太原06-2 山西 81 明绿1号 安徽
Jilyu 0816 Hebei Taiyuan 06-2 Shanxi Minglyu 1 Anhui
22 冀绿10号 河北 52 太原52 山西 82 明绿2号 安徽
Jilyu 10 Hebei Taiyuan 52 Shanxi Minglyu 2 Anhui
23 冀绿11号 河北 53 太原VC3061A 山西 83 明绿3号 安徽
Jilyu 11 Hebei Taiyuan VC3061A Shanxi Minglyu 3 Anhui
24 冀绿7号 河北 54 太原VC4503B 山西 84 明绿4号 安徽
Jilyu 7 Hebei Taiyuan VC4503B Shanxi Minglyu 4 Anhui
25 冀绿8号 河北 55 太原串辐 山西 85 明绿5号 安徽
Jilyu 8 Hebei Taiyuanchuanfu Shanxi Minglyu 5 Anhui
26 冀绿9号 河北 56 太原早-1 山西 86 明绿7号 安徽
Jilyu 9 Hebei Taiyuanzao-1 Shanxi Minglyu 7 Anhui
27 晋绿1号 山西 57 太原早-2 山西 87 明绿8号 安徽
Jinlyu 1 Shanxi Taiyuanzao-2 Shanxi Minglyu 8 Anhui
28 晋绿3号 山西 58 同1188326 山西 88 明绿9号 安徽
Jinlyu 3 Shanxi Tong 1188326 Shanxi Minglyu 9 Anhui
29 晋绿4号 山西 59 宛绿2号 河南 89 皖科绿1号 安徽
Jinlyu 4 Shanxi Wanlyu 2 Henan Wankelyu 1 Anhui
30 晋绿6号 山西 60 潍绿05-8 山东 90 皖科绿3号 安徽
Jinlyu 6 Shanxi Weilyu 05-8 Shandong Wankelyu 3 Anhui

Fig. 1

Types and frequency of SSR A: frequency of different SSR types. Momo-, Di-, Tri-, Tetra-, Penta-, and Hexa-represents mononucleotide, dinucleotide, trinucleotide, tetranucleotide, pentanucleotide and hexanucleotiede repeat motif, respectively. B-G: Mon-(B), Di-(C), Tri-(D), Tetra-(E), Penta-(F), and Hexa-(G) motif types and frequency."

Table 2

Evaluation of the SSR length polymorphism"

SSR长度多态性
SSR length
polymorphism
聚类数量
No. of clusters
比例
Percentage (%)
设计引物数量
No. of designed primers
1 492,264 92.15
2 33,893 6.34 1920
3 5422 1.01 538
4 1604 0.30 172
5 573 0.11 65
6 231 0.04 28
7 101 0.02 10
8 51 0.01 3
9 29 0.01 2
≥10 41 0.01 4
合计Total 534,209 100.00 2742

"

Fig. 2

Validation analysis of the designed primers A: statistical analysis of PCR amplification results of the 157 primers; B: primer amplification results on the 11 chromosomes. MSP: markers amplified specific and polymorphic bands; MSN: markers amplified specific and non-polymorphic bands; MNN: markers amplified non-specific or no bands."

Table 4

Description of 40 SSR markers"

引物名称
Name
等位基因数
Allele number
有效等位基因数
Effective number of allele
多态性信息含量
Polymorphism information content
Nei’s基因多样性
Nei’s gene diversity
Vr1-1 2 1.91 0.36 0.48
Vr1-5 4 2.73 0.58 0.64
Vr1-7 3 1.66 0.37 0.41
Vr1-8 3 1.72 0.38 0.43
Vr1-9 3 2.71 0.56 0.63
Vr2-2 3 2.20 0.45 0.54
Vr2-6 3 1.81 0.41 0.46
Vr2-8 3 2.10 0.44 0.52
Vr3-2 5 4.21 0.72 0.76
Vr3-3 3 2.12 0.43 0.53
Vr3-9 3 2.37 0.51 0.58
Vr3-10 3 1.71 0.35 0.40
Vr4-4 3 2.66 0.54 0.62
Vr4-7 2 1.91 0.36 0.48
Vr5-3 3 2.54 0.54 0.61
Vr5-4 4 3.27 0.64 0.69
Vr5-5 2 1.91 0.36 0.47
Vr5-6 3 2.88 0.58 0.65
Vr6-4 3 1.89 0.39 0.46
Vr6-7 2 1.67 0.31 0.39
Vr6-9 2 1.41 0.24 0.28
Vr6-10 2 1.82 0.34 0.44
Vr6-12 2 1.97 0.37 0.49
Vr7-5 2 1.67 0.33 0.41
Vr7-12 2 1.92 0.37 0.48
Vr7-14 3 2.05 0.43 0.51
Vr7-17 2 1.72 0.33 0.41
引物名称
Name
等位基因数
Allele number
有效等位基因数
Effective number of allele
多态性信息含量
Polymorphism information content
Nei’s基因多样性
Nei’s gene diversity
Vr7-20 2 1.72 0.33 0.41
Vr7-25 2 1.75 0.34 0.43
Vr8-3 3 2.13 0.42 0.53
Vr8-4 3 1.31 0.22 0.23
Vr8-14 3 2.54 0.52 0.60
Vr9-3 2 1.80 0.35 0.45
Vr9-14 4 2.21 0.51 0.55
Vr10-7 5 2.78 0.58 0.64
Vr10-9 4 3.29 0.64 0.69
Vr10-17 3 1.47 0.30 0.34
Vr11-4 8 3.25 0.64 0.69
Vr11-9 3 2.08 0.43 0.51
Vr11-10 3 1.51 0.30 0.35
平均Mean 3 2.16 0.43 0.51

Fig. 3

Dendrogram of mung bean accessions based on Nei’s genetic distance matrix by UPGMA 1-90 correspond with the number of mung bean accessions given in Table 1."

[1] 程须珍, 王述民 . 中国食用豆类品种志. 北京: 中国农业科学技术出版社, 2009. pp 19-20.
Cheng X Z, Wang S M. Chinese Legumes Variety Pictorial. Beijing: China Agricultural Science and Technology Press, 2009. pp 19-20(in Chinese).
[2] Fuller D Q, Harvey E L . The archaeobotany of Indian pulses: identification, processing and evidence for cultivation. Environ Archaeol, 2006,11:219-246.
doi: 10.1179/174963106x123232
[3] Nair R M, Schafleitner R, Kenyon L, Srinivasan R, Easdown W, Ebert A W, Hanson P . Genetic improvement of mung bean. SABRAO J Breed Genet, 2012,44:177-190.
[4] 郑卓杰, 王述民, 宗绪晓 . 中国食用豆类学. 北京: 中国农业出版社, 1997. pp 3-6.
Zheng Z J, Wang S M, Zong X X. Food Legumes in China. Beijing: China Agriculture Press, 1997. pp 3-6(in Chinese).
[5] 王丽侠, 程须珍, 王素华 . 绿豆种质资源、育种及遗传研究进展. 中国农业科学, 2009,42:1519-1527.
Wang L X, Cheng X Z, Wang S H . Advances in research on genetic resources, breeding and genetics of mung bean (Vigna radiata L.). Sci Agric Sin, 2009,42:1519-1527 (in Chinese with English abstract).
[6] 程须珍, 王素华 . 中国绿豆产业发展及科技应用. 北京: 中国农业科学技术出版社, 2002. pp 3-8.
Cheng X Z, Wang S H. Indusdustrial Development and Technology Utilization of Mungbean in China. Beijing: China Agricultural Science and Technology Press, 2002. pp 3-8(in Chinese).
[7] Kang Y J, Kim S K, Kim M Y, Lestari P, Kim K H, Ha B K, Jun T H, Hwang W J, Lee T, Lee J, Shim S, Yoon M Y, Jang Y E, Han K S, Taeprayoon P, Yoon N, Somta P, Tanya P, Kim K S, Gwag J G, Moon J K, Lee Y H, Park B S, Bombarely A, Doyle J J, Jackson S A, Schafleitner R, Srinives P, Varshney R K, Lee S H . Genome sequence of mung bean and insights into evolution within Vigna species. Nat Commun, 2014,5:5443, doi: 10.1038/ ncomms6443.
[8] 刘岩, 程须珍, 王丽侠, 王素华, 白鹏, 吴传书 . 基于SSR标记的中国绿豆种质资源遗传多样性研究. 中国农业科学, 2013,46:4197-4209.
Liu Y, Cheng X Z, Wang L X, Wang S H, Bai P, Wu C S . Genetic diversity research of mungbean germplasm resources by SSR markers in China. Sci Agric Sin, 2013,46:4197-4209 (in Chinese with English abstract).
[9] 任红晓, 程须珍, 徐东旭, 高运青, 尚启兵 . 应用SSR标记分析中国北方名优绿豆的遗传多样性. 植物遗传资源学报, 2015,16:395-399.
Ren H X, Cheng X Z, Xu D X, Gao Y Q, Shang Q B . Genetic diversity of traditional mungbean varieties in northern China by SSR markers. J Plant Genet Resour, 2015,16:395-399 (in Chinese with English abstract).
[10] 赵丹, 程须珍, 王丽侠, 王素华, 马燕玲 . 绿豆遗传连锁图谱的整合. 作物学报, 2010,36:932-939.
Zhao D, Cheng X Z, Wang L X, Wang S H, Ma Y L . Integration of mungbean (Vigna radiata) genetic linkage map. Acta Agron Sin, 2010,36:932-939 (in Chinese with English abstract).
[11] Isemura T, Kaga A, Tabata S, Somta P, Srinives P, Shimizu T, Jo U, Vaughan D A, Tomooka N . Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS One, 2012,7:e41304.
[12] 王建花, 张耀文, 程须珍, 王丽侠 . 绿豆分子遗传图谱构建及若干农艺性状的QTL定位分析. 作物学报, 2017,43:1096-1102.
Wang J H, Zhang Y W, Cheng X Z, Wang L X . Construction of genetic map and identification of QTLs related to agronomic traits in mung bean. Acta Agron Sin, 2017,43:1096-1102 (in Chinese with English abstract).
[13] 王丽侠, 程须珍, 王素华, 刘长友, 梁辉 . 小豆SSR引物在绿豆基因组中的通用性分析. 作物学报, 2009,35:816-820.
Wang L X, Cheng X Z, Wang S H, Liu C Y, Liang H . Transferability of SSR from adzuki bean to mungbean. Acta Agron Sin, 2009,35:816-820 (in Chinese with English abstract).
[14] 钟敏, 程须珍, 王丽侠, 王素华, 王小宝 . 绿豆基因组SSR引物在豇豆属作物中的通用性. 作物学报, 2012,38:223-230.
Zhong M, Cheng X Z, Wang L X, Wang S H, Wang X B . Transferability of mungbean genomic-SSR markers in other vigna species. Acta Agron Sin, 2012,38:223-230 (in Chinese with English abstract).
[15] Kumar S V, Tan S G, Quah S C, Yusoff K . Isolation and characterization of seven tetranucleotide microsatellite loci in mungbean, Vigna radiata. Mol Ecol Notes, 2002,2:293-295.
[16] Miyagi M, Humphry M, Ma Z Y, Lambrides C J, Bateson M, Liu C J . Construction of bacterial artificial chromosome libraries and their application in developing PCR-based markers closely linked to a major locus conditioning bruchid resistance in mung bean (Vigna radiata L. Wilczek). Theor Appl Genet, 2004,110:151-156.
[17] Gwag J G, Chung J W, Chung H K, Lee J H, Ma K H . Characterization of new microsatellite markers in mungbean, Vigna radiata(L.). Mol Ecol Notes, 2006,6:1132-1134.
[18] Somta P, Musch W, Kongsamai B, Chanprame S, Nakasatien S, Toojinda T, Sorajjapinun W, Seehalak W, Tragoonrung S, Srinives P . New microsatellite markers isolated from mungbean (Vigna radiata(L.) Wilczek). Mol Ecol Resour, 2008,8:1155-1157.
[19] Seehalak W, Somta P, Sommanas W, Srinives P . Microsatellite markers for mungbean developed from sequence database. Mol Ecol Resour, 2009,9:862-864.
doi: 10.1111/men.2009.9.issue-3
[20] Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W, Sommanas W, Tragoonrung S, Srinives P . Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata(L.) Wilczek). BMC Plant Biol, 2009,9:137, doi: 10.1186/1471- 2229-9-137.
[21] Somta P, Seehalak W, Srinives P . Development, characterization and cross-species amplification of mungbean (Vigna radiata) genic microsatellite markers. Conserv Genet, 2009,10:1939-1943.
[22] Wang L X, Elbaidouri M, Abernathy B, Chen H L, Wang S H, Lee S H, Jackson S A, Cheng X Z . Distribution and analysis of SSR in mung bean (Vigna radiata L.) genome based on an SSR- enriched library. Mol Breed, 2015,35:25, doi: 10.1007/s11032- 015-0259-8.
[23] Chen H L, Wang L X, Wang S H, Liu C Y, Blair M W, Cheng X Z . Transcriptome sequencing of mung bean (Vigna radiate L.) genes and the identification of EST-SSR markers. PLoS One, 2015,10:e0120273.
[24] Liu C Y, Fan B J, Cao Z M, Su Q Z, Wang Y, Zhang Z X, Wu J, Tian J . A deep sequencing analysis of transcriptomes and the development of EST-SSR markers in mungbean (Vigna radiata). J Genet, 2016,95:527-535.
[25] 孙子奎, 陈永灿 . 一种基于磁珠富集法高通量开发基因组SSR标记的方法. 中国专利, 2014,ZL201310222359. 9.
Sun Z K, Chen Y C . A method of developing genome SSR markers based on magnetic bead enrichment for NGS, China patent, 2014,ZL201310222359. 9.
[26] Lindgreen S . AdapterRemoval: easy cleaning of next-generation sequencing reads. BMC Res Notes, 2012,5:337, doi: 10.1186/ 1756-0500-5-337.
doi: 10.1186/1756-0500-5-337
[27] Magoč T, Salzberg S L . FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011,27:2957-2963.
doi: 10.1093/bioinformatics/btr507
[28] Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B C, Remm M, Rozen S G . Primer3: new capabilities and interfaces. Nucl Acids Res, 2012,40:e115.
doi: 10.1093/nar/gks596
[29] Krawczak M, Nikolaus S, von Eberstein H, Croucher P J, El Mokhtari N E, Schreiber S . PopGen: population-based recruitment of patients and controls for the analysis of complex genotype-phenotype relationships. Commun Genet, 2006,9:55-61.
[30] Liu K, Muse S V . PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 2005,21:2128-2129.
doi: 10.1093/bioinformatics/bti282
[31] 吴传书 . 绿豆SSR标记的开发及高密度分子遗传连锁图谱的构建. 甘肃农业大学硕士学位论文, 甘肃兰州, 2014.
Wu C S . Development of SSR Markers and Construction of a Genetic Linkage Map in Mungbean (Vigan radiate L.). MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2014 (in Chinese with English abstract).
[32] Gupta S K, Bansal R, Gopalakrishna T . Development and characterization of genic SSR markers for mungbean (Vigna radiata(L.) Wilczek). Euphytica, 2014,195:245-258.
[33] Yang T, Bao S Y, Ford R, Jia T J, Guan J P, He Y H, Sun X L, Jiang J Y, Hao J J, Zhang X Y, Zong X X . High-throughput novel microsatellite marker of faba bean via next generation sequencing. BMC Genomics, 2012,13:602, doi: 10.1186/1471-2164-13-602.
doi: 10.1186/1471-2164-13-602
[34] Gao L F, Tang J F, Li H W, Jia J Z . Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed, 2003,12:245-261.
doi: 10.1023/A:1026346121217
[35] Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P . Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet, 2004,109:800-805.
doi: 10.1007/s00122-004-1685-x
[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[3] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[4] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[5] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[6] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[7] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[8] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[9] DANG Ke, GONG Xiang-Wei, LYU Si-Ming, ZHAO Guan, TIAN Li-Xin, JIN Fei, YANG Pu, FENG Bai-Li, GAO Xiao-Li. Effects of nitrogen application rate on photosynthetic characteristics and yield of mung bean under the proso millet and mung bean intercropping [J]. Acta Agronomica Sinica, 2021, 47(6): 1175-1187.
[10] HU Dong-Xiu, LIU Hao, HONG Yan-Bin, LIANG Xuan-Qiang, CHEN Xiao-Ping. Identification and expression analysis of microRNA during peanut (Arachis hypogaea L.) pod development [J]. Acta Agronomica Sinica, 2021, 47(4): 613-625.
[11] YANG Yang, LI Huai-Lin, HU Li-Min, FAN Chu-Chuan, ZHOU Yong-Ming. Genetic analysis and molecular characterization of multilocular trait in the srb mutant of Brassica rapa L. [J]. Acta Agronomica Sinica, 2021, 47(3): 385-393.
[12] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[13] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[14] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[15] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!