Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (11): 1682-1690.doi: 10.3724/SP.J.1006.2019.91007

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Effects of HMW-GS on wheat quality under different water conditions

ZHAO Jia-Jia1,MA Xiao-Fei1,ZHENG Xing-Wei1,HAO Jian-Yu1,QIAO Ling1,GE Chuan1,WANG Ai-Ai1,ZHANG Shu-Wei2,ZHANG Xiao-Jun2,JI Hu-Tai1,ZHENG Jun1,*()   

  1. 1 Institute of Wheat Research, Shanxi Academy of Agricultural Sciences, Linfen 041000, Shanxi, China
    2 Institute of Crop Science Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030006, Shanxi, China
  • Received:2019-01-21 Accepted:2019-06-12 Online:2019-11-12 Published:2019-07-12
  • Contact: Jun ZHENG E-mail:sxnkyzj@126.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0100600);the Nation Key Research and Development Program of Shanxi Province(201703D211007);the Nation Key Research and Development Program of Shanxi Province(201803D4210);Innovation Platform(201605D151002)

Abstract:

The effects of high molecular weight glutenin subunit (HMW-GS) on quality traits were evaluated using recombine inbred lines (RILs) under different water conditions. Different water regimes influenced effects of subunits at Glu-1 loci on quality traits. Under the same background of 1 at Glu-A1 and 5'+12 at Glu-D1, the 14+15 had more significant effects on the development time under rain-fed and max resistance under well-watered regime than 13+16, with the increase of 5.10% and 6.16%, respectively. The combination of 5+10 had much more significant effects on Zeleny sedimentation under well-water regime and stretch area and max resistance under rain-fed than 5'+12. The effect of (1, 14+15, 5+10) on Zeleny sedimentation was significantly higher than that of (1, 13+16, 5'+12), and the stretch area under well-watered condition had similar trends. The protein content and extensibility of each combination, and the stability time and stretch area of (1, 14+15, 5+10) and the stability time of (1, 13+16, 5+10) were significantly influenced by water conditions, and the performance of other quality traits was relatively stable. Compared with the condition of well-watered, the bread volume of (1, 13+16, 5+10) and (1, 14+15, 5+10) were slightly larger under rain-fed conditions, while (1, 14+15, 5'+12) and (1, 13+16, 5'+12) were opposite. The results of the study have a positive guiding role to select and popularize varieties suitable for production and cultivation at local area.

Key words: HMW-GS, RIL, quality traits, well-watered, rain-fed

Fig. 1

SDS-PAGE of HMW-GS in RILs M1: Yannong 19 (1, 17+18, 5+10); M2: Shaan 225 (1, 14+15, 2+12); M3: Shiluan 02-1 (1, 7+9, 5+10); M4: Chinese Spring (N, 7+8, 2+12). 1: CH7034; 10: SY95-71; 2-9: partial lines of RIL."

Table 1

Occurrence of HMW-GS in RILs of SY95-71/CH7034 cross"

Glu-A1 Glu-B1 Glu-D1 株系数量
Number of RILs
比例
Ratio (%)
1 13+16 5+10 43 23.89
1 13+16 5'+12 41 22.78
1 14+15 5+10 57 31.67
1 14+15 5'+12 39 21.67

Table 2

Correlation coefficients of quality traits between different years and water conditions"

相关性
Correlation
蛋白质
Protein
content (%)
沉降值
Zeleny
(mL)
形成时间
Development time (min)
稳定时间
Stability time (min)
拉伸面积
Stretch area (cm2)
最大抗延阻力
Max resistance (B.U.)
延伸性
Tractility
(mm)
不同年度(WW)
Different years (WW)
0.75** 0.75** 0.66** 0.64** 0.66** 0.63** 0.80**
不同年度(RF)
Different years (RF)
0.78** 0.74** 0.62** 0.68** 0.67** 0.68** 0.71**
不同水分(2017年)
Water conditions (2017)
0.37 0.71** 0.69** 0.55* 0.51* 0.59** 0.42
不同水分(2018年)
Water conditions (2018)
0.39 0.63** 0.57** 0.42* 0.53* 0.53** 0.41

Table 3

Variation of quality traits of RILs in different water conditions"

性状
Trait
处理
Treatment
亲本 Parent RILs
SY95-71 CH7034 均值Mean 幅度Range 变异系数CV (%)
蛋白质含量
Protein content (%)
RF 16.00±0.14 b 18.44±0.24 a 16.37±0.10 14.03-19.08 7.19
WW 15.31±0.14 b 16.55±0.26 a 14.90±0.09 12.18-18.12 7.32
沉降值
Zeleny (mL)
RF 37.98±2.83 a 47.94±1.95 a 37.28±0.43 28.12-49.15 13.13
WW 40.47±6.43 a 45.33±3.53 a 36.17±0.57 20.58-49.38 17.02
形成时间
Development time (min)
RF 5.65±0.09 a 5.51±0.12 a 5.25±0.04 4.12-6.63 8.73
WW 5.68±1.68 a 5.66±1.02 a 5.16±0.05 3.82-6.50 11.79
稳定时间
Stability time (min)
RF 7.12±0.11 a 7.15±0.16 a 6.89±0.06 4.90-9.15 10.74
WW 6.36±0.55 a 7.78±0.54 a 7.29±0.08 4.83-9.40 12.48
拉伸面积
Stretch area (cm2)
RF 96.28±15.26 a 107.47±6.53 a 96.95±1.18 54.32-139.5 14.04
WW 85.5±39.17 a 115.45±22.88 a 101.70±1.65 60.50-138.33 18.72
最大抗延阻力
Max resistance (B.U.)
RF 564.55±96.39 a 600.76±38.24 a 522.29±6.43 358.0-725.5 14.20
WW 422.92±78.08 a 605.62±88.05 a 510.90±8.50 300.5-720.5 19.18
延伸性
Extensibility (mm)
RF 172.28±4.55 b 198.84±4.12 a 173.23±1.04 145.27-201.53 6.91
WW 170.6±0.41 b 181.46±1.41 a 161.77±1.10 132.4-195.78 7.82

Table 4

Comparison of effects produced by alleles at the Glu-1 locus on measured quality parameters"

亚基
Subunit
蛋白质含量
Protein content (%)
沉降值
Zeleny (mL)
形成时间
Development time (min)
稳定时间
Stability time (min)
拉伸面积
Stretch area (cm2)
最大抗延阻力
Max Resistance (B.U.)
延伸性
Extensibility (mm)
RF WW RF WW RF WW RF WW RF WW RF WW RF WW
13+16 16.31 A 14.89 B 36.85 a 35.85 a 5.17 a 5.11 a 6.87 B 7.26 A 96.33 a 98.96 a 521.16 A 512.01 B 172.91 A 161.52 B
14+15 16.43 A 14.90 B 37.75 a 36.58 a 5.32 a 5.20 a 6.92 B 7.31 A 97.80 B 104.6 A 522.09 a 523.65 a 173.50 A 161.98 B
LSD 0.38 0.04 0.72 0.34 3.70* 0.66 0.15 0.12 0.23 2.58 71.74** 0.34 0.08 0.04
变异比Percentage (%) 0.73 0.07 2.41 2.02 2.86 1.75 0.73 0.69 1.5 5.54 0.18 2.25 0.34 0.28
5+10 16.37 A 14.95 B 37.69 a 37.49 a 5.27 a 5.21 a 6.87 B 7.35 A 99.07 b 103.93 a 533.29 a 515.89 a 173.99 A 162.18 B
5'+12 16.39 A 14.87 B 36.41 a 34.95 a 5.22 a 5.10 a 6.93 a 7.21 a 95.00 a 99.60 a 509.96 B 519.77 A 172.27 A 161.24 B
LSD 0.2 0.39 3.89* 5.34* 0.33 1.05 0.21 0.68 2.72 2.06 97.3** 0.11 0.68 0.18
变异比Percentage (%) 0.12 0.54 3.45 7.01 0.95 2.13 0.87 1.92 4.19 4.25 4.47 0.75 0.99 0.58

Table 5

Effects of glutenin subunit on quality parameters"

组合
Subunit composition
蛋白质
Protein content (%)
沉降值
Zeleny (mL)
形成时间
Development time (min)
稳定时间
Stability time (min)
拉伸面积
Stretch area (cm2)
最大抗延阻力
Max Resistance (B.U.)
延伸性
Extensibility (mm)
RF WW F % RF WW F % RF WW F % RF WW F % RF WW F % RF WW F % RF WW F %
1, 13+16, 5+10 16.43 a 15.11 a 23.83** 8.37 37.91 ab 37.42 a 0.08 1.3 5.23 ab 5.22 a 0.01 0.25 6.87 a 7.25 a 4.82* 5.38 100.19 a 102.15 ab 0.14 2.81 541.10 a 522.19 ab 1.36 5.89 175.54 a 163.60 a 208.58** 7.04
1, 13+16, 5'+12 16.18 a 14.66 a 21.06** 9.85 35.79 b 34.28 b 1.06 4.31 5.09 b 5.00 a 0.42 1.92 6.86 a 7.26 a 2.67 5.68 92.56 b 95.76 b 0.51 4.47 501.22 b 501.82 b 0.001 0.12 170.11 a 159.31 a 110.69** 6.56
1, 14+15, 5+10 16.32 a 14.83 a 36.00** 9.51 38.47 a 37.55 a 1.48 2.42 5.29 ab 5.20 a 0.73 1.85 6.86 a 7.42 a 10.46** 7.72 97.95 ab 105.71 a 5.91* 5.84 525.48 ab 509.58 ab 0.76 3.07 172.80 a 161.10 a 260.58** 7.01
1, 14+15, 5'+12 16.61 a 15.01 a 34.42** 10.13 37.02 ab 35.61 ab 0.45 3.88 5.35 a 5.20 a 0.91 2.85 6.99 a 7.16 a 0.48 2.38 97.64 ab 103.44 ab 1.9 5.69 518.69 ab 537.72 a 0.86 0.84 174.50 a 163.24 a 139.32** 6.67

Fig. 2

Bread with different subunits combinations under rain-fed regimeSC1: (1, 13+16, 5+10); SC2: (1, 13+16, 5'+12); SC3: (1, 14+15, 5+10); SC4: (1, 14+15, 5'+12)."

Fig. 3

Bread volumes of different subunits combinations under two water conditions SC is the same as that given in Fig. 2."

[1] Payne P I, Corfield K G, Blackman J A . Correlation between the inheritance of certain high-molecular-weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. J Sci Food Agric, 1981,32:51-60.
[2] Lawrence G J, Shepherd K W . Inheritance of glutenin protein subunits of the high molecular wheat. Theor Appl Genet, 1981,60:333-337.
[3] Payne P I, Lawrence G J . Catalogue of alleles for the complex loci, Glu-A1, Glu-B1 and Glu-D1, which code for high molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res Commun, 1983,11:29-35.
[4] Lawrence G J, Macritchie F, Wrigley C W . Dough and baking quality of wheat lines deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci. J Cereal Sci, 1988,7:109-112.
[5] Payne P I, Mark A N, Krattiger A F, Holt L M . The relationship between HMW glutenin subunit composition and bread-making quality of British-grown wheat varieties. J Sci Food Agric, 1987,40:51-65.
[6] Branlard G, Dardcvet M, Saccomano R, Lagoutte F, Gourdon J . Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica, 2001,119:59-67.
[7] Lagudh E S, Halloran G M . Phylogenetic relationships of Triticum tauschii the D genome donor to hexaploid wheat: I. Variation in HMW subunits of glutenin and gliadins. Theor Appl Genet, 1988,75:592-598.
[8] 韩彬 , Shepherd K W. 低分子量谷蛋白亚基与醇溶蛋白的关系及其对小麦烘烤品质的影响. 中国农业科学, 1991,24(4):19-25.
Han B, Shepherd K W . The correlation between LMW glutenin subunits and gliadins and their effects on bread-making quality in the progeny of two wheats. Sci Agric Sin, 1991,24(4):19-25 (in Chinese with English abstract).
[9] Pena R J, Zacro-Hemandez J, Mujeeb-Kazi A . Glutenin subunits composition and bread-making quality characteristies of synthetic hexaploid Wheats derived from Triticum turgidum × Triticum tauschii (coss) Schmal crosses. J Cereal Sci, 1995,21:15-23.
[10] Sontag-Strohm T, Payne P I, Salovaara H . Effect of allelic variation of glutenin subunits and gliadins on baking quality in the progeny of two biotypes of bread wheat cv. Ulla. J Cereal Sci, 1996,24:115-124.
[11] 王晨阳, 郭天财, 彭羽, 朱云集, 马冬云, 张灿军 . 花后灌水对小麦籽粒品质性状及产量的影响. 作物学报, 2004,30:1031-1035.
Wang C Y, Guo T C, Peng Y, Zhu Y J, Ma D Y, Zhang C J . Effects of post-anthesis irrigation on grain quality indices and yield in winter wheat (Triticum aestivum L.). Acta Agron Sin, 2004,30:1031-1035 (in Chinese with English abstract).
[12] Popineau Y, Cornec M, Lefebvre J, Marchylo B . Influence of high Mr glutenin subunits on glutenin polymers and rheological properties of glutens and gluten subfractions of near-isogenic lines of wheat Sicco. J Cereal Sci, 1994,19:231-241.
[13] Nieto T, Perretant M . R, Rousset M. Effect of gliadins and HMW and LMW subunits of glutenin on dough properties in the F6 recombinant inbred lines from a bread wheat cross. Theor Appl Genet, 1994,88:81-88.
[14] Langner M, Krystkowiak K, Salmanowicz B P, Adamski T, Krajewski P, Kaczmarek Z, Surma M . The influence of Glu-1 and Glu-3 loci on dough rheology and bread-making properties in wheat( Triticum aestivum L.) doubled haploid lines. J Sci Food Agric, 2017,97:5083-5091.
[15] Deng Z Y, Tian J C, Sun G X . Influence of high molecular weight glutenin subunit substitution on rheological behavior and bread-baking quality of near-isogenic lines developed from Chinese wheats. Plant Breed, 2005,124:428-431.
[16] Gao X, Liu T H, Yu J G, Li L Q, Feng Y, Li X J . Influence of high-molecular-weight glutenin subunit composition at Glu-B1 locus on secondary and micro structures of gluten in wheat(Triticum aestivum L.). Food Chem, 2016,197:1184-1190.
[17] Pang B S, Yang Y S, Wang L F, Zhang X Y, Yu Y J . Complementary effect of high-molecular-weight glutenin subunits on bread-making quality in common wheat. Acta Agron Sin, 2009,35:1379-1385.
[18] 刘丽, 周阳, 何中虎, 阎俊, 张艳, Pena R J . Glu-1Glu-3等位变异对小麦加工品质的影响. 作物学报, 2004,30:959-968.
Liu L, Zhou Y, He Z H, Yan J, Zhang Y, Pena R J . Effect of allelic variation at Glu-1 and Glu-3 loci on processing quality in common wheat. Acta Agron Sin, 2004,30:959-968 (in China with English abstract).
[19] 张华文, 田纪春, 管延安, 杨延兵, 任卫国 . 利用RIL-6群体研究HMW-GS对小麦品质指标的影响. 中国农业科学, 2007,40:464-471.
Zhang H W, Tian J C, Guan Y A, Yang Y B, Ren W G . A study of the effects of high molecular weight glutenin subunits (HMW-GS) on quality traits, using recombinant inbred line-6 (RIL-6) population. Sci Agric Sin, 2007,40:464-471 (in Chinese with English abstract).
[20] 张延滨, 赵海滨, 宋庆杰, 于海洋, 张春利, 辛文利, 肖志敏 . 龙麦20小麦品种中7+8*亚基和17+18亚基近等基因系间的品质差异. 中国农业科学, 2008,41:1536-1541.
Zhang Y B, Zhao H B, Song Q J, Yu H Y, Zhang C L, Xin W L, Xiao Z M . Quality difference of near-isogenic lines with HMW glutenin subunits 7+8* and 17+18 in wheat cultivars Longmai 20. Sci Agric Sin, 2008,41:1536-1541 (in Chinese with English abstract).
[21] Mary J G, Jeffrey C S, Katherine O B, Edward S . Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Sci, 2001,41:327-335.
[22] 王立秋, 靳占忠, 曹敬山, 王占宇 . 水肥因子对小麦籽粒及面包烘烤品质的影响. 中国农业科学, 1997,30(3):67-73.
Wang L Q, Jin Z Z, Cao J S, Wang Z Y . Effect of water and fertilizer factors on grain quality and breeding baking quality of wheat. Sci Agric Sin, 1997,30(3):67-73 (in China with English abstract).
[23] Zhou J X, Liu D M, Deng X, Zhen S M, Wang Z M, Yan Y M . Effects of water deficit on bread making quality and storage protein composition in bread wheat (Triticum aestivum L.). J Sci Food Agric, 2018,11:4357-4368.
[24] Farrand E A . Potential milling and baking value of home grown wheat. J Natl Inst Agric Bot, 1972,12:464-470.
[25] 马冬云, 朱云集, 郭天财, 王晨阳 . 基因型和环境及其互作对河南省小麦品质的影响及品质稳定性分析. 麦类作物学报, 2002,22(4):13-18.
doi: 10.7606/j.issn.1009-1041.2002.04.096
Ma D Y, Zhu Y J, Guo T C, Wang C Y . Effect of genotype, environment and G×E interaction on wheat quality of Henan province and the stability analysis. J Trit Crops, 2002,22(4):13-18 (in Chinese with English abstract).
doi: 10.7606/j.issn.1009-1041.2002.04.096
[26] Campbell C A, Davidson H R, Winkleman G E . Effect of nitrogen, temperature, growth stage and duration of moisture stress on yield components and protein content of mantou spring wheat. Can J Plant Sci, 1981,61:549-563.
[27] Weegels P L, Hamer R J, Schofield J D . RP-HPLC and capillary electrophoresis of subunits from glutenin isolated by SDS and Osborne fraction. J Cereal Sci, 1995,22:211-224.
[28] Don C, Lichtendonk W J, Plijter J J, Hamera R J . Understanding the link between GMP and dough: from glutenin particles in flour towards developed dough. J Cereal Sci, 2003,38:157-165.
[29] 赵琦, 李勇, 李文阳, 王平, 陈晓光, 尹燕枰, 王振林 . 水氮互作对不同基因型小麦HMW-GS含量及GMP粒度分布的影响. 中国农业科学, 2011,44:1571-1584.
Zhao Q, Li Y, Li W Y, Wang P, Chen X G, Yin Y P, Wang Z L . Effects of water-nitrogen interaction on content of high molecular weight glutenin subunits and GMP size distribution in wheat cultivars of different genotypes. Sci Agric Sin, 2011,44:1571-1584 (in Chinese with English abstract).
[30] 岳鸿伟, 谭维娜, 姜东, 戴廷波, 荆奇, 曹卫星 . 花后干旱和渍水对小麦籽粒HMW-GS及GMP含量的影响. 作物学报, 2007,33:1845-1849.
Yue H W, Tan W N, Jiang D, Dai T B, Jing Q, Cao W X . Effect of post anthesis drought and waterlogging on contents of high molecular weight glutenin subunits and glutenin macropolymer in wheat grain. Acta Agron Sin, 2007,33:1845-1849 (in Chinese with English abstract).
[31] 郝黎仁, 樊元, 郝哲欧 . SPSS实用统计分析. 北京: 中国水利水电出版社, 2002.
Hao L R, Fan Y, Hao Z O. The Practical Statistical Analysis of SPSS. Beijing: China Water & Power Press, 2002 (in Chinese).
[32] Bronneke V, Zimmermann G, Killermann B . Effect of high molecular weight glutenins and D-zone gliadins on bread making quality in German wheat varieties. Cereal Res Commun, 2000,28:187-194.
[33] Grama A, Wright D S C, Cressey P J . Hexaploid wild emmer wheat derivatives grown under New Zealand condition: I. Relationship between protein composition and quality parameters. New Zeal J Agric Res, 1987,30(1):35-43.
[34] 马传喜, 徐风, 谭蕴之 . 在一对面包小麦杂交后代中Glu-B1控制的麦谷蛋白亚基17+18对烘烤品质的影响. 作物学报, 1995,21:90-94.
Ma C X, Xu F, Tan Y Z . Effects of high molecular weight subunits 17+18 of glutenin on bread-making quality in progenies from a bread wheat cross. Acta Agron Sin, 1995,21:90-94 (in Chinese with English abstract).
[35] Redaelli R, Pogna N E, Ng P K W . Effects of prolamins encoded by chromosomes 1B and 1D on the rheological properties of dough in near-isogenic lines of bread wheat. Cereal Chem, 1997,74:102-107.
[36] 张学勇, 董玉琛, 游光侠, 王兰芬, 李培, 贾继增 . 中国大面积推广品种及骨干亲本的高分子量麦谷蛋白亚基组成分析. 中国农业科学, 2001,34:355-362.
Zhang X Y, Dong Y C, You G X, Wang L F, Li P, Jia J Z . Allelic variation of Glu-A1, Glu-B1 and Glu-D1 in Chinese commercial wheat varieties in the last 50 years. Sci Agric Sin, 2001,34:355-362 (in Chinese with English abstract).
[37] 王步军 . 2017年中国小麦质量报告. 北京: 中国农业科学技术出版社, 2018.
Wang B J. The 2017 Report of China Wheat Quality. Beijing: China Agricultural Science and Technology Press, 2018 (in Chinese).
[38] 李硕碧, 高翔, 单明珠, 李必运 . 小麦高分子量谷蛋白亚基与加工品质. 北京: 中国农业出版社, 2001.
Li S B, Gao X, Shan M Z, Li B Y. The High Molecular Weight Glutenin Subunits and Industrial Quality of Wheat. Beijing: China Agriculture Press, 2001 (in Chinese).
[1] ZHOU Jie-Qiang, ZHANG Gui-Lian, DENG Hua-Bing, MING Xing-Quan, LEI Bin, LI Fan, TANG Wen-Bang. Advantages of small grain male sterile lines in seed production for a new combination Zhuoliangyou 141 through the mixed-sowing manner [J]. Acta Agronomica Sinica, 2022, 48(2): 320-331.
[2] WANG Ya-Liang, ZHU De-Feng, ZHANG Yu-Ping, CHEN Ruo-Xia, XIANG Jing, CHEN Hui-Zhe, CHEN Jiang-Hua, WANG Feng. Analysis on the plant growth and yield formation of double cropping late season hybrid rice in machine transplanting with long seedling age by precision drill sowing [J]. Acta Agronomica Sinica, 2022, 48(1): 215-225.
[3] WANG Na, BAI Jian-Fang, MA You-Zhi, GUO Hao-Yu, WANG Yong-Bo, CHEN Zhao-Bo, ZHAO Chang-Ping, ZHANG Ling-Ping. Cloning and expression analysis of lncRNA27195 and its target gene TaRTS in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(8): 1417-1426.
[4] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[5] ZHOU Bu-Jin, LI Gang, JIN Gang, ZHOU Rui-Yang, LIU Dong-Mei, TANG Dan-Feng, LIAO Xiao-Fang, LIU Yi-Ding, ZHAO Yan-Hong, WANG Yi-Ning. Creation of male sterile germplasm using the partial length gene of HcPDIL5-2a in kenaf [J]. Acta Agronomica Sinica, 2021, 47(6): 1043-1053.
[6] WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868.
[7] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[8] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[9] LI Jing-Lin, LI Jia-Lin, LI Xin-Peng, AN Bao-Guang, ZENG Xiang, WU Yong-Zhong, HUANG Pei-Jing, LONG Tuan. Creation and combining ability analysis of recessive genic sterile lines with a new ptc1 locus in rice [J]. Acta Agronomica Sinica, 2021, 47(11): 2173-2183.
[10] LU Geng,TANG Xin,LU Jun-Xing,LI Dan,HU Qiu-Yun,HU Tian,ZHANG Tao. Cloning and function analysis of a type 2 diacylglycerol acyltransferase (DGAT2) from Perilla frutescens [J]. Acta Agronomica Sinica, 2020, 46(8): 1283-1290.
[11] CHEN Ri-Rong,ZHOU Yan-Biao,WANG Dai-Jun,ZHAO Xin-Hui,TANG Xiao-Dan,XU Shi-Chong,TANG Qian-Ying,FU Xing-Xue,WANG Kai,LIU Xuan-Ming,YANG Yuan-Zhu. CRISPR/Cas9-mediated editing of the thermo-sensitive genic male-sterile gene TMS5 in rice [J]. Acta Agronomica Sinica, 2020, 46(8): 1157-1165.
[12] JIANG Hui-Bing,YANG Sheng-Mei,LIU Yu-Fei,TIAN Yi-Ping,SUN Yun-Nan,CHEN Lin-Bo,TANG Yi-Chun. Biological characteristics and cytological studies on anther abortion of male sterile Camellia crassocolumna [J]. Acta Agronomica Sinica, 2020, 46(7): 1076-1086.
[13] Jian-Bin GUO,Li HUANG,Nian LIU,Huai-Yong LUO,Xiao-Jing ZHOU,Wei-Gang CHEN,Bei WU,Dong-Xin HUAI,Xiao-Ping REN,Hui-Fang JIANG. Novel peanut genotype with low behenic acid developed from recombinant inbred lines [J]. Acta Agronomica Sinica, 2020, 46(5): 661-667.
[14] ZHANG Ping-Ping,YAO Jin-Bao,WANG Hua-Dun,SONG Gui-Cheng,JIANG Peng,ZHANG Peng,MA Hong-Xiang. Soft wheat quality traits in Jiangsu province and their relationship with cookie making quality [J]. Acta Agronomica Sinica, 2020, 46(4): 491-502.
[15] Fang-Quan WANG,Fang-Jun FAN,Shi-Jian XIA,Shou-Yu ZONG,Tian-Qing ZHENG,Jun WANG,Wen-Qi LI,Yang XU,Zhi-Hui CHEN,Yan-Jie JIANG,Ya-Jun TAO,Wei-Gong ZHONG,Jie YANG. Interactive effects of the photoperiod-/thermo-sensitive genic male sterile genes tms5 and pms3 in rice [J]. Acta Agronomica Sinica, 2020, 46(3): 317-329.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!