Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (10): 1522-1534.doi: 10.3724/SP.J.1006.2019.84130
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI Ji-Yang1,2,HU Yan1,YAO Rui2,DAI Pei-Hong1,*(),LIU Xiao-Dong1,*()
[1] | Feng Z, Zhang B, Ding W, Liu X, Yang D, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu J . Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013,23:1229-1232. |
[2] | Wang Z P, Xing H L, Dong L, Zhang H, Han C, Wang X, Chen Q . Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol, 2015,16:144. doi: 10.1186/s13059-015-0715-0. |
[3] | Kleinstiver B P, Pattanayak V, Prew M S, Tsai S Q, Nguyen N T, Zheng Z L, Joung J K . High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016,529:490-495. |
[4] | Zhang Q, Xing H L, Wang Z P . Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Mol Biol, 2018,96:445-456. |
[5] | Slaymaker I M, Gao L, Zetsche B . Rationally engineered Cas9 nucleases with improved specificity. Science, 2016,351:84-88. |
[6] | 谢胜松, 张懿, 张利生, 李广磊, 赵长志, 倪攀, 赵书红 . CRISPR/Cas9系统中sgRNA设计与脱靶效应评估. 遗传, 2015,37:1125-1136. |
Xie S S, Zhang Y, Zhang L S, Li G L, Zhao C Z, Ni P , Zhao S H. sgRNA design and off-target effect evaluation in CRISPR/Cas9 system. Genetic, 2015,37:1125-1136 (in Chinese with English abstract). | |
[7] | 郑武, 谷峰 . CRISPR/Cas9的应用及脱靶效应研究进展. 遗传, 2015,37:1003-1010. |
Zheng W, Gu F . Progress in the application and off-target effects of CRISPR/Cas9. Genetic, 2015,37:1003-1010 (in Chinese with English abstract). | |
[8] | 单奇伟, 高彩霞 . 植物基因组编辑及衍生技术最新研究进展. 遗传, 2015,37:953-973. |
Shan Q W, Gao C X . The latest research progress in plant genome editing and derivative technology. Genetic, 2015,37:953-973 (in Chinese with English abstract). | |
[9] | 郭文江 . 锌指核酸酶介导的基因打靶阳性细胞脱靶位点分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2013. |
Guo W J . Zinc Finger Nuclease-mediated Gene Targeting Target Cell Off-target Site Analysis. MS Thesis of Northwest A&F University, Yangling, China, 2013 (in Chinese with English abstract). | |
[10] | Qi J, Dong Z, Shi Y, Wang X, Qin Y, Wang Y, Liu D . NgAgo- based fabp11a gene knockdown causes eye developmental defects in zebrafish. Cell Res, 2016,26:1349-1352. |
[11] | Sander J D, Zaback P, Joung J K, Voytas D F, Dobbs D . Zinc Finger Targeter ( ZiFiT): an engineered zinc finger/target site design tool. Nucl Acids Res, 2007,35:W599-W605. |
[12] | Cho S W, Kim S, Kim Y, Kweon J, Kim H S, Bae S, Kim J . Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res, 2014,24:132-141. |
[13] | Ma Y, Yu L, Pan S, Gao S, Chen W, Zhang X, Dong W, Li J, Zhou R, Huang L, Han Y, Zhang L, Zhang L . CRISPR/Cas9 mediated targeting of the Rosa26 locus produces Cre reporter rat strains for monitoring Cre-loxP mediated lineage tracing. FEBS J, 2017,284:3262-3277. |
[14] | Bi Y, Hua Z, Liu X, Hua W, Ren H, Xiao H, Zhang L, Li L, Wang Z, Laible G, Wang Y, Dong F, Zheng X . Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Sci Rep, 2016,6:31729. doi: 10.1038/srep31729. |
[15] | Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F . Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339:819-823. |
[16] | Wei C, Liu J, Yu Z, Zhang B, Gao G, Jiao R . TALEN or Cas9- rapid, efficient and specific choices for genome modifications. J Genet Genomics, 2013,40:281-289. |
[17] | Chen Y, Liu X, Zhang Y, Li D, Lui K O, Ding Q . A self-restricted CRISPR system to reduce off-target effects. Mol Ther, 2016,24:1508-1510. |
[18] | Feng C, Su H, Bai H, Liu Y, Guo X, Liu C, Zhang J, Yuan J, Birchler J A, Han F . High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnol J, 2018,16:1848-1857. |
[19] | Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M . RNA-guided human genome engineering via Cas9. Science, 2013,339:823-826. |
[20] | Lee C M, Cradick T J, Bao G . The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol Ther, 2016,24:645-654. |
[21] | Ran F A, Cong L, Yan W X, Scott D A, Gootenberg J S, Kriz A J, Zetsche B, Shalem O, Wu X, Makarova K S, Koonin E V, Sharp P A, Zhang F . In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015,520:186-191. |
[22] | Müller M, Lee C M, Gasiunas G, Davis T H, Cradick T J, Siksnys V, Bao G, Cathomen T, Mussolino C . Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol Ther, 2016,24:636-644. |
[23] | Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro E M, Winblad N, Choudhury S R, Abudayyeh O, Gootenberg J S, Wu W, Scott D A . Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol, 2017,35:31-34. |
[24] | Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, Lorenzin F, Prandi D, Romanel A, Demichelis F, Inga A, Cereseto A . A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol, 2018,36:265-271. |
[25] | Chen J S, Dagdas Y S, Kleinstiver B P, Welch M, Sousa A, Harrington L B, Sternberg S H, Joung J K, Yildiz A, Doudna J A . Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature, 2017,550:407-410. |
[26] | Lee J K, Jeong E, Lee J, Jung M, Shin E, Kim Y, Lee K, Jung I, Kim D, Kim S, Kim J . Directed evolution of CRISPR-Cas9 to increase its specificity. Nat Commun, 2018,9:3048. doi: 10.1038/s41467-018-05477-x. |
[27] | Farboud B, Meyer B J . Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics, 2015,199:959-971. |
[28] | Li J, Manghwar H, Sun L, Wang P, Wang G, Sheng H, Zhang J, Liu H, Qin L, Rui H, Li B, Lindsey K, Daniell H, Jin S, Zhang X . Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants. Plant Biotechnol J, 2018. doi: 10.1111/pbi.13020. |
[29] | Wang P, Zhang J, Sun L, Ma Y, Xu J, Liang S, Deng J, Tan J, Zhang Q, Tu L, Daniell H, Jin S, Zhang X . High efficient multisites genome editing in allotetraploid cotton ( Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J, 2018,16:137-150. |
[30] | 李继洋, 雷建峰, 代培红, 姚瑞, 曲延英, 陈全家, 李月, 刘晓东 . 基于棉花U6 启动子的海岛棉CRISPR/Cas9基因组编辑体系的建立. 作物学报, 2018,44:227-235. |
Li J Y, Lei J F, Dai P H, Yao R, Qu Y Y, Chen Q J, Li Y, Li X D . Establishment of an island cotton based on the cotton U6 promoter, CRISPR/Cas9 genome editing system. Acta Agron Sin, 2018,44:227-235 (in Chinese with English abstract). | |
[31] | Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Qiu J, Gao C . Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013,31:686-688. |
[32] | Lu Y, Chen X, Wu Y, Wang Y, He Y, Wu Y . Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay. PLoS One, 2013,8:e57171. |
[33] | Farboud B, Meyer B J . Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics, 2015,199:959-971. |
[34] | Li C, Unver T, Zhang B . A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in cotton ( Gossypium hirsutum L.). Sci Rep, 2017,7:43902. doi: 10.1038/srep43902. |
[35] | Paul J . GENE by Stel Pavlou. Simon & Schuster. UK: Pocket Books, 2005. pp 125-187. |
[36] | Wang-Michelitsch J, Michelitsch T M . Cell transformation in tumor-development: a result of accumulation of Misrepairs of DNA through many generations of cells. arXiv preprint ar Xiv. 2015: 1505. 01375. |
[1] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[2] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[3] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[4] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[5] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[6] | ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409. |
[7] | ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510. |
[8] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[9] | YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815. |
[10] | ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623. |
[11] | GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247. |
[12] | MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826. |
[13] | XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671. |
[14] | ZHOU Guan-Tong, LEI Jian-Feng, DAI Pei-Hong, LIU Chao, LI Yue, LIU Xiao-Dong. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing [J]. Acta Agronomica Sinica, 2021, 47(3): 427-437. |
[15] | HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450. |
|