Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (6): 902-913.doi: 10.3724/SP.J.1006.2020.93053

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of strip-till with staggered planting on yield formation and shoot-root characteristics of spring maize in irrigation area of Xiliaohe plain

ZHANG Yu-Qin1,YANG Heng-Shan1,*(),LI Cong-Feng2,ZHAO Ming2,LUO Fang1,ZHANG Rui-Fu1   

  1. 1College of Agronomy, Inner Mongolia University for the Nationalities, Tongliao 028042, Inner Mongolia, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2019-09-23 Accepted:2020-01-15 Online:2020-06-12 Published:2020-01-24
  • Contact: Heng-Shan YANG E-mail:yanghengshan2003@aliyun.com
  • Supported by:
    National Key Research and Development Program of China(2017YFD0201806);National Natural Science Foundation of China(31960382)

Abstract:

A field research was conducted in the Agricultural High-tech Demonstration Park in Horqin District of Tongliao, Inner Mongolia, using the maize variety Nonghua 101 with two cropping modes, including strip-till with staggered planting (seeding strip tillage, 15 cm + 45 cm narrow-double row staggered sowing, TGCW) and conventional tillage with equal row space (rotary tillage with row space of 60 cm, CK), and three planting densities (67,500 plants hm -2, 82,500 plants hm -2, and 97,500 plants hm -2) in 2017 and 2018 to study the effect of strip-till with staggered planting on regulating spring maize yield formation and coordination characteristics of shoot-root in irrigation areas of Xiliao river plain. The model of that strip-till with staggered planting enhanced maize yield by 13.1% and 13.8% in 2017 and 2018, under the planting density 82,500 plants hm -2 compared with CK, respectively. The strip-till with staggered planting showed a distinct advantage on the amount and rate of dry matter accumulation after silking, which obviously delayed the senility of leaves in later growth stage, meanwhile, compared with CK, the light transmittance significantly increased in or above panicle layers. The leaf area index, net photosynthetic rate and population photosynthetic potential in the model of strip-till with staggered planting were higher than those in CK in late growth stage. At later growing stage, the strip-till with staggered planting had significantly higher root dry weight than CK in different soil layers, with the highest root ratio in 20-60 cm, especially under higher planting density. The grain yield against per unit of root weight at silking and root-shoot ratio at maturity had a distinct advantage. In conclusion the strip-till with staggered planting combined with high planting density can increase light transmission rate in above-spike layer in late growing stage, alleviate leaf area decline, increase production capacity, facilitate root growth and increase root ratio in deeper soil layers. Shoot-root coordination under dense planting is one of the main reasons facilitating yield increase of spring maize in irrigation areas of Xiliao river plain.

Key words: spring maize, strip-till with staggered cultivation, maize yield, crown-root characteristics

Fig. 1

Sketch map of different planting patterns and field photograph of seedling stage"

Table 1

Spring maize yield and its components under different planting patterns"

年份
Year
种植密度
Plant density
(×104 ear hm-2)
种植模式
Planting pattern
有效穗数
Effective spike
(×104 ear hm-2)
穗粒数
Kernels per
spike
千粒重
1000-kernel
weight (g)
实测产量
Yield
(t hm-2)
2017 6.75 TGCW 6.31 c 554.00 a 397.67 a 11.25 c
CK 6.27 c 522.33 b 386.00 ab 10.56 c
8.25 TGCW 7.62 b 506.33 bc 375.00 abc 12.87 b
CK 7.52 b 486.67 d 356.33 bc 11.38 c
9.75 TGCW 9.02 a 463.00 d 354.67 bc 13.82 a
CK 8.95 a 433.67 e 347.00 c 12.43 b
2018 6.75 TGCW 6.12 c 583.67 a 415.33 a 13.78 b
CK 5.97 c 560.00 b 403.00 ab 12.84 c
8.25 TGCW 7.65 b 554.00 b 386.67 bc 14.76 a
CK 7.71 b 529.33 c 371.00 bc 12.97 c
9.75 TGCW 9.12 a 516.00 c 367.00 cd 15.34 a
CK 9.03 a 485.67 d 355.33 d 13.87 b

Table 2

Analysis of variance of spring maize yield and yield components under different planting patterns"

年份
Year
差异源
Source of difference
产量
Yield
穗粒数
Kernels per spike
千粒重
1000-kernel weight
F P F P F P
2017 密度Density (D) 41.466** 0.0021 41.318** 0.0234 70.16* 0.0140
种植方式Planting patterns (T) 24.614** 0.0025 49.993** 0.0010 5.37 0.1571
密度×种植方式D×T 1.113 0.3881 0.127 0.8823 0.48 0.6394
2018 密度Density (D) 25.098** 0.0054 16.048** 0.0076 95.84* 0.0103
种植方式Planting patterns (T) 74.245** 0.0001 92.866** 0.0010 11.60 0.0794
密度×种植方式D×T 3.604 0.0938 0.977 0.4172 1.031 0.3916

Table 3

Dry matter accumulation and accumulation rate before and after silking of spring maize under different planting patterns"

年份
Year
种植密度
Plant density
(×104 plants hm-2)
种植模式
Planting pattern
吐丝前 Before silking 吐丝后 After silking
积累量
Dry matter
accumulation (t hm-2)
积累率
Accumulation
rate (%)
积累量
Dry matter
accumulation (t hm-2)
积累率
Accumulation
rate (%)
2017 6.75 TGCW 10.85 d 48.62 11.46 b 51.38
CK 10.89 d 50.31 10.76 c 49.69
8.25 TGCW 12.81 b 51.10 12.25 a 48.90
CK 12.43 c 51.19 11.85 b 48.81
9.75 TGCW 13.73 a 52.15 12.60 a 47.85
CK 13.33 b 53.60 11.54 b 46.40
2018 6.75 TGCW 11.94 d 48.46 12.90 c 51.54
CK 11.23 d 47.45 12.44 c 52.55
8.25 TGCW 13.82 c 49.02 14.37 b 50.98
CK 13.15 c 50.44 12.92 c 49.56
9.75 TGCW 15.09 a 49.89 15.15 a 50.11
CK 14.60 b 51.39 13.80 b 48.61

Table 4

Leaf source characteristics of spring maize under different planting patterns"

年份
Year
种植密度
Plant density
(×104 plants hm-2)
种植模式
Planting
pattern
叶面积指数
LAI
净光合速率
NPR (μmol CO2 m-2 s-1)
群体光合势
LAD (m2 d hm-2)
吐丝期
Silking
乳熟期
Milking
吐丝期
Silking
乳熟期
Milking
吐丝期-乳熟期
Silking-milking
乳熟期-完熟期
Milking-maturity
2017 6.75 TGCW 4.89 c 4.59 d 32.48 a 30.22 ab 151.68 d 104.94 e
CK 4.71 c 4.18 e 29.72 ab 28.27 b 142.24 d 92.73 f
8.25 TGCW 6.87 b 6.23 b 28.57 b 25.38 c 209.60 c 138.27 c
CK 6.71 b 5.76 c 31.78 a 29.19 a 199.52 c 124.91 d
9.75 TGCW 7.91 a 7.03 a 30.33 a 27.11 b 239.04 a 162.86 a
CK 7.60 a 6.46 b 29.36 a 25.04 c 224.96 b 143.88 b
2018 6.75 TGCW 5.30 c 5.01 e 23.32 a 20.71 b 164.95 d 120.49 e
CK 5.19 c 4.70 f 21.52 ab 18.75 c 158.25 d 112.38 e
吐丝期
Silking
乳熟期
Milking
吐丝期
Silking
乳熟期
Milking
吐丝期-乳熟期
Silking-milking
乳熟期-完熟期
Milking-maturity
8.25 TGCW 6.56 b 6.01 c 19.32 bc 16.97 d 201.17 c 146.54 c
CK 6.38 b 5.56 d 23.43 a 21.62 b 191.05 c 133.99 d
9.75 TGCW 8.07 a 7.21 a 23.63 a 19.61 c 244.63 a 175.97 a
CK 7.81 a 6.70 b 21.37 b 17.02 d 232.16 b 160.24 b

Fig. 2

Light transmission rate in different layers of spring maize under different planting patterns Bars superscripted by different small letters indicate significant differences among treatments in the same year at the 0.05 probability level. SWS: upper ear leaf; SWC: ear leaf; SWX: under ear leaf. "

Table 5

Root dry weight in different soil layers of spring maize under different planting patterns (kg hm-2) "

土层深度
Siol depth
(cm)
种植密度
Plant density
(×104 plants hm-2)
种植模式
Planting pattern
2017 2018
吐丝期
Silking
乳熟期
Milking
完熟期
Maturity
吐丝期
Silking
乳熟期
Milking
完熟期
Maturity
0-20 6.75 TGCW 23.35 a 21.02 a 18.39 a 24.42 a 20.93 a 19.53 a
CK 23.58 a 20.37 b 16.49 b 23.79 a 20.16 a 17.68 b
8.25 TGCW 19.37 b 17.94 c 14.82 c 20.36 b 18.13 b 15.49 c
CK 19.58 b 16.81 d 13.59 d 19.71 b 17.05 c 14.06 d
9.75 TGCW 17.24 c 15.85 e 11.75 e 17.92 c 15.94 d 12.25 e
CK 17.58 c 14.92 f 10.34 f 17.56 c 14.57 e 11.01 f
F
F-value
密度Density (D) 40.21** 167.66** 105.67** 605.89** 318.40** 460.93**
种植方式Planting patterns (T) 7.99 10.87* 15.82** 26.82 44.73* 61.18*
密度×种植方式D×T 0.23 1.05 2.94 0.51 0.40 1.48
20-40 6.75 TGCW 1.31 a 1.13 a 0.78 a 1.44 a 1.16 a 0.88 a
CK 1.01 bc 0.81 c 0.56 c 1.19 bc 1.09 b 0.63 bc
8.25 TGCW 1.25 a 0.97 b 0.68 bc 1.29 b 1.06 b 0.80 a
CK 0.91 c 0.73 d 0.46 d 0.96 d 0.85 c 0.50 d
9.75 TGCW 1.18 b 0.77 cd 0.57 c 1.13 c 0.77 d 0.56 cd
CK 0.75 d 0.52 e 0.35 e 0.88 d 0.63 e 0.37 e
F
F-value
密度Density (D) 13.03* 55.24* 62.32** 39.12** 47.15** 31.43*
种植方式Planting patterns (T) 116.25** 112.83** 195.80** 80.05** 14.66* 64.17**
密度×种植方式D×T 1.15 0.68 0.02 0.47 4.52 3.78
40-60 6.75 TGCW 0.75 a 0.73 a 0.48 a 0.72 a 0.76 a 0.56 a
CK 0.58 b 0.61 b 0.35 b 0.53 c 0.64 b 0.44 b
8.25 TGCW 0.53 bc 0.46 c 0.31 b 0.61 bc 0.52 c 0.36 c
CK 0.38 d 0.38 d 0.23 c 0.44 de 0.34 e 0.25 d
9.75 TGCW 0.47 c 0.43 c 0.26 c 0.51 cd 0.42 d 0.32 d
CK 0.31 d 0.26 e 0.18 d 0.39 e 0.31 e 0.23 e
F
F-value
密度Density (D) 322.43** 45.07** 207.30** 56.75** 241.38** 280.65**
种植方式Planting patterns (T) 318.15** 19.00* 141.69** 134.36** 106.93** 160.60*
密度×种植方式D×T 1.43 4.21 4.62 1.80 2.87 0.52

Table 6

Roots distribution of spring maize in different soil layers under different planting patterns (%)"

土层深度
Soil depth
(cm)
种植密度
Plant density
(×104 plants hm-2)
种植模式
Planting pattern
2017 2018
吐丝期
Silking
乳熟期
Milking
完熟期
Maturity
吐丝期
Silking
乳熟期
Milking
完熟期
Maturity
0-20 6.75 TGCW 91.89 91.87 93.59 91.87 91.60 93.13
CK 93.68 93.48 94.77 93.26 92.10 94.29
8.25 TGCW 91.58 92.62 93.74 91.46 91.94 93.03
CK 93.82 93.84 95.17 93.37 93.48 94.94
9.75 TGCW 91.27 92.96 93.40 91.62 93.05 93.30
CK 94.31 95.03 95.12 93.26 93.94 94.83
20-40 6.75 TGCW 5.16 4.94 3.97 5.42 5.08 4.20
CK 4.01 3.72 3.22 4.66 4.98 3.36
8.25 TGCW 5.91 5.01 4.30 5.80 5.41 4.80
CK 4.36 4.05 3.22 4.55 4.66 3.38
9.75 TGCW 6.25 4.52 4.53 5.78 4.50 4.27
CK 4.02 3.31 3.22 4.67 4.06 3.19
40-60 6.75 TGCW 2.95 3.19 2.44 2.71 3.33 2.67
CK 2.30 2.80 2.01 2.08 2.92 2.35
8.25 TGCW 2.51 2.37 1.96 2.74 2.65 2.16
CK 1.82 2.11 1.61 2.08 1.86 1.69
9.75 TGCW 2.49 2.52 2.07 2.61 2.45 2.44
CK 1.66 1.66 1.66 2.07 2.00 1.98

Fig. 3

Ratio of root/shoot and grain weight per unit of root weight under different planting patterns"

Fig. 4

Correlation analysis between dry matter accumulation, root dry weight and grain yield under different planting patterns"

[1] 王崇桃, 李少昆, 韩伯棠 . 玉米高产之路与产量潜力挖掘. 科技导报, 2006,24(4):8-11.
Wang C T, Li S K, Han B T . Approaches to high-yielding and yield potential exploration in corn. Sci Technol Rev, 2006,24(4):8-11 (in Chinese with English abstract).
[2] 靳立斌, 张吉旺, 李波, 崔海岩, 董树亭, 刘鹏, 赵斌 . 高产高效夏玉米的冠层结构及其光合特性. 中国农业科学, 2013,46:2430-2439.
Jin L B, Zhang J W, Li B, Cui H Y, Dong S T, Liu P, Zhao B . Canopy structure and photosynthetic characteristics of high yield and high nitrogen efficiency summer maize. Sci Agric Sin, 2013,46:2430-2439 (in Chinese with English abstract).
[3] 杨丽雯, 张永清 . 4种旱作谷类作物根系发育规律的研究. 中国农业科学, 2011,44:2244-2251.
Yang L W, Zhang Y Q . Developing patterns of root systems of four cereal crops planted in dryland areas. Sci Agric Sin, 2011,44:2244-2251 (in Chinese with English abstract).
[4] 陈晓远, 高志红, 罗远培 . 植物根冠关系. 植物生理学通讯, 2005,41:555-562.
Chen X Y, Gao Z H, Luo Y P . Relationship between root and shoot of plants. Plant Physiol Commun, 2005,41:555-562 (in Chinese with English abstract).
[5] 张玉芹, 杨恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 杨升辉 . 超高产春玉米冠层结构及其生理特性. 中国农业科学, 2011,44:4367-4376.
Zhang Y Q, Yang H S, Gao J L, Zhang R F, Wang Z G, Xu S J, Fan X Y, Yang S H . Study on canopy structure and physiological characteristics of super-high yield spring maize. Sci Agric Sin, 2011,44:4367-4376 (in Chinese with English abstract).
[6] 郭家萌, 刘振朝, 高强, 薛吉全, 高聚林, 翟广谦, 柳家友, 孙海昆, 郭新平, 边少锋, 王俊河, 王延波, 张东兴, 陈新平 . 深松对玉米产量和养分吸收的影响. 水土保持学报, 2016,30(2):249-254.
Guo J M, Liu Z C, Gao Q, Xue J Q, Gao J L, Zhai G Q, Liu J Y, Sun H K, Guo X P, Bian S F, Wang J H, Wang Y B, Zhang D X, Chen X P . Effects of subsoiling on yield and nutrient uptake of maize. J Soil & Water Conserv, 2016,30(2):249-254 (in Chinese with English abstract).
[7] 王新兵, 侯海鹏, 周宝元, 孙雪芳, 马玮, 赵明 . 条带深松对不同密度玉米群体根系空间分布的调节效应. 作物学报, 2014,40:2136-2148.
Wang X B, Hou H P, Zhou B Y, Sun X F, Ma W, Zhao M . Effect of strip subsoiling on population root spatial distribution of maize under different planting densities. Acta Agron Sin, 2014,40:2136-2148 (in Chinese with English abstract).
[8] 王洪君, 王楠, 胡宇, 栾天宇, 孙孟琪, 梁烜赫, 赵鑫, 栾天浩, 代永刚, 陈宝玉 . 半干旱区玉米行距调整增密对群体冠层结构及产量的影响. 玉米科学, 2018,26(6):75-78.
Wang H J, Wang N, Hu Y, Luan T Y, Sun M Q, Liang X H, Zhao X, Luan T H, Dai Y G, Chen B Y . Effects of row spacing on canopy structure and yield of maize in semi-arid area. J Maize Sci, 2018,26(6):75-78 (in Chinese with English abstract).
[9] 何冬冬, 杨恒山, 张玉芹 . 扩行距、缩株距对春玉米冠层结构及产量的影响. 中国生态农业学报, 2018,26:397-408.
He D D, Yang H S, Zhang Y Q . Effects of line-spacing expansion and row-spacing shrinkage on canopy structure and yield of spring corn. Chin J Eco-Agric, 2018,26:397-408 (in Chinese with English abstract).
[10] Liu T D, Song F B . Maize photosynthesis and microclimate within the canopies at grain-filling stage in response to narrow-wide row planting patterns. Photosynthetica, 2012,50:215-222.
[11] 魏珊珊, 王祥宇, 董树亭 . 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响. 应用生态学报, 2014,25:441-450.
Wei S S, Wang X Y, Dong S T . Effects of row spacing on canopy structure and grain-filling characteristics of high-yield summer maize. Chin J Appl Ecol, 2014,25:441-450 (in Chinese with English abstract).
[12] Ren B Z, Li X, Dong S T, Liu P, Zhao B, Zhang J W . Soil physical properties and maize root growth under different tillage systems in the North China Plain. Crop J, 2018,6:669-676.
[13] Shao H, Shi D F, Shi W J, Ban X B, Chen Y C, Ren W, Chen F J, Mi G H . Genotypic difference in the plasticity of root system architecture of field-grown maize in response to plant density. Plant Soil, 2019,439:201-217.
[14] 宋日, 刘利, 吴春胜, 马丽艳 . 根系生长空间对玉米生长和养分吸收的影响. 西北农林科技大学学报, 2009,37(6):58-64.
Song R, Liu L, Wu C S, Ma L Y . The effect of root growth space on maize growth and nutrient absorption. J Northwest A&F Univ, 2009,37(6):58-64 (in Chinese with English abstract).
[15] 张玉芹, 杨恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 毕文波 . 超高产春玉米的根系特征. 作物学报, 2011,37:735-743.
Zhang Y Q, Yang H S, Gao J L, Zhang R F, Wang Z G, Xu S J, Fan X Y, Bi W B . Root characteristics of super high-yield spring maize. Acta Agron Sin, 2011,37:735-743 (in Chinese with English abstract).
[16] Duvick D N . The contribution of breeding to yield advances in maize ( Zea mays L.). Adv Agron, 2005,86:83-145.
[17] 杨哲 . 栽培措施对春玉米产量差和效率差的贡献及其调控机制. 内蒙古农业大学硕士学位论文, 内蒙古通辽, 2018.
Yang Z . Contribution of Management Factors to the Gaps of Yield and Resource Use Efficiency of Spring Maize and Regulating Pathway. MS Thesis of Inner Mongolia Agricultural University, Tongliao, Inner Mongolia, China, 2018 (in Chinese with English abstract).
[18] 赵明, 马玮, 周宝元, 孙雪芳 . 实施玉米推茬清垄精播技术实现高产高效与环境友好生产. 作物杂志, 2016, ( 3):1-5.
Zhao M, Ma W, Zhou B Y, Sun X F . Using integrated technology of stubble-shoving, ridge-cleaning and precise sowing to achieve the high yield, high efficiency and environment-friendly in maize production. Crops, 2016, ( 3):1-5 (in Chinese with English abstract).
[19] 魏建军, 罗赓彤, 张力, 潘文远 . 超高产大豆主要群体生理参数与经济产量关系的研究. 中国油料作物学报, 2007,29:272-276.
Wei J J, Luo G T, Zhang L, Pan W Y . A study of relation between canopy physiological parameter and seed yield in super high-yield soybean. Chin J Oil Crop Sci, 2007,29:272-276 (in Chinese with English abstract).
[20] 李潮海, 刘奎 . 不同产量水平玉米杂交种生育后期光合效率比较分析. 作物学报, 2002,28:379-383.
Li C H, Liu K . Analysis of photosynthesis efficiency of maize hybrids with different yield in the later growth stage. Acta Agron Sin, 2002,28:379-383 (in Chinese with English abstract).
[21] Maddonni G A, Otegui M E, Cirilo A G . Plant population density, rows pacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Res, 2001,71:183-193.
[22] 苌建峰, 张海红, 李鸿萍, 董朋飞, 李潮海 . 不同行距配置方式对夏玉米冠层结构和群体抗性的影响. 作物学报, 2016,42:104-112.
Chang J F, Zhang H H, Li H P, Dong P F, Li C H . Effects of different row spaces on canopy structure and resistance of summer maize. Acta Agron Sin, 2016,42:104-112 (in Chinese with English abstract).
[23] 李少昆, 王崇桃 . 中国玉米生产技术的演变与发展. 中国农业科学, 2009,42:1941-1951.
Li S K, Wang C T . Evolution and development of maize production techniques in China. Sci Agric Sin, 2009,42:1941-1951 (in Chinese with English abstract).
[24] 杨罗锦, 陶洪斌, 王璞 . 种植密度对不同株型玉米生长及根系形态特征的影响. 应用与环境生物学报, 2012,18:1009-1013.
Yang L J, Tao H B, Wang P . Effect of planting density on plant growth and root morphology of maize. Chin J Appl Environ Biol, 2012,18:1009-1013 (in Chinese with English abstract).
[25] 李宗新, 陈源泉, 王庆成, 刘开昌, 高旺盛, 隋鹏 . 高产栽培条件下种植密度对不同类型玉米品种根系时空分布动态的影响. 作物学报, 2012,38:1286-1294.
Li Z X, Chen Y Q, Wang Q C, Liu K C, Gao W S, Sui P . Influence of planting density on root spatio-temporal distribution of different types of maize under high-yielding cultivation conditions. Acta Agron Sin, 2012,38:1286-1294 (in Chinese with English abstract).
[26] 张瑞富, 杨恒山, 高聚林, 张玉芹, 王志刚, 范秀艳, 毕文波 . 深松对春玉米根系形态特征和生理特性的影响. 农业工程学报, 2015,31(5):78-84.
Zhang R F, Yang H S, Gao J L, Zhang Y Q, Wang Z G, Fan X Y, Bi W B . Effect of subsoiling on root morphological and physiological characteristics of spring maize. Trans CSAE, 2015,31(5):78-84 (in Chinese with English abstract).
[27] 刘朝巍, 张恩和, 谢瑞芝, 刘武仁, 李少昆 . 玉米宽窄行交替休闲保护性耕作的根系和光分布特征研究. 中国生态农业学报, 2012,20:203-209.
Liu C W, Zang E H, Xie R Z, Liu W R, Li S K . Effect of conservation tillage of wide/narrow row planting on maize root and transmittance distribution. Chin J Eco-Agric, 2012,20:203-209 (in Chinese with English abstract).
[28] 梁熠, 何文寿, 代晓华, 马琨, 侯贤清 . 株行配置对春玉米根冠空间分布及产量的影响. 玉米科学, 2016,24(6):97-102.
Liang Y, He W S, Dai X H, Ma K, Hou X Q . Effects of planting density and row spacing on root-shoot spatial distribution and grain yield of spring maize. J Maize Sci, 2016,24(6):97-102 (in Chinese with English abstract).
[29] Brouwer R . Functional equilibrium: sense or nonsense. Neth J Agric Sci, 1983,31:335-348.
[30] 肖继兵, 孙占祥, 杨久廷, 张玉龙, 郑家明, 刘洋 . 半干旱区中耕深松对土壤水分和作物产量的影响. 土壤通报, 2011,42:709-714.
Xiao J B, Sun Z X, Yang J T, Zhang Y L, Zheng J M, Liu Y . Effect of subsoiling on soil water and crop yield in semi-arid area. Chin J Soil Sci, 2011,42:709-714 (in Chinese with English abstract).
[31] 王新兵, 侯海鹏, 周宝元, 孙雪芳, 马玮, 赵明 . 条带深松对不同密度玉米群体根系空间分布的调节效应. 作物学报, 2014,40:2136-2148.
Wang X B, Hou H P, Zhou B Y, Sun X F, Ma W, Zhao M . Effect of strip subsoiling on population root spatial distribution of maize under different planting densities. Acta Agron Sin, 2014,40:2136-2148 (in Chinese with English abstract).
[1] ZHANG Xue-Lin, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, ZHOU Ya-Nan, HAO Xiao-Feng, YANG Qing-Hua. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize [J]. Acta Agronomica Sinica, 2021, 47(8): 1603-1615.
[2] GAO Zhen, LIANG Xiao-Gui, ZHANG Li, ZHAO Xue, DU Xiong, CUI Yan-Hong, ZHOU Shun-Li. Effects of irrigating at different growth stages on kernel number of spring maize in the North China Plain [J]. Acta Agronomica Sinica, 2021, 47(7): 1324-1331.
[3] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[4] ZHU Ya-Li, WANG Chen-Guang, YANG Mei, ZHENG Xue-Hui, ZHAO Cheng-Feng, ZHANG Ren-He. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density [J]. Acta Agronomica Sinica, 2021, 47(3): 507-519.
[5] LIU Peng-Zhao,SHI Zu-Jiao,NING Fang,WANG Rui,WANG Xiao-Li,LI Jun. Critical nitrogen dilution curves and nitrogen nutrition diagnosis of spring maize under different precipitation patterns in Weibei dryland [J]. Acta Agronomica Sinica, 2020, 46(8): 1225-1237.
[6] LI Rui-Jie,TANG Hui-Hui,WANG Qing-Yan,XU Yan-Li,WANG Qi,LU Lin,YAN Peng,DONG Zhi-Qiang,ZHANG Feng-Lu. Effects of 5-aminolevulinic acid and ethephon compound on carbon balance of source-sink of spring maize in Northeast China [J]. Acta Agronomica Sinica, 2020, 46(7): 1063-1075.
[7] Wei BAI,Zhan-Xiang SUN,Li-Zhen ZHANG,Jia-Ming ZHENG,Liang-Shan FENG,Qian CAI,Wu-Yan XIANG,Chen FENG,Zhe ZHANG. Effects of plough layer construction on soil three phase rate and root morphology of spring maize in northeast China [J]. Acta Agronomica Sinica, 2020, 46(5): 759-771.
[8] WANG Yan-Li,WU Peng-Nian,LI Pei-Fu,WANG Xi-Na,ZHU Xu. Effects of organic manure combined with nitrogen fertilizer on spring maize yield and soil fertility under drip irrigation [J]. Acta Agronomica Sinica, 2019, 45(8): 1230-1237.
[9] Fang NING,Yuan-Hong ZHANG,Peng-Fei WEN,Rui WANG,Qian WANG,Zhao-Yang DONG,Guang-Can JIA,Jun LI. Responses of maize growth and yield to nitrogen application in dryland under different precipitation conditions [J]. Acta Agronomica Sinica, 2019, 45(5): 777-791.
[10] Hui-Hui TANG,Yan-Li XU,Qing-Yan WANG,Zheng-Bo MA,Guang-Yan LI,Hui DONG,Zhi-Qiang DONG. Increasing spring maize yield by basic application of PASP chelating nitrogen fertilizer in northeast China [J]. Acta Agronomica Sinica, 2019, 45(3): 431-442.
[11] Hai-Chao FAN,Wan-Rong GU,De-Guang YANG,Ju-Ping YU,Lin PIAO,Qian ZHANG,Li-Guo ZHANG,Xiu-Hong YANG,Shi WEI. Effect of Chemical Regulators on Physical and Chemical Properties and Lodging Resistance of Spring Maize Stem in Northeast China [J]. Acta Agronomica Sinica, 2018, 44(6): 909-919.
[12] BAI Wei, ZHANG Li-Zhen, PANG Huan-Cheng, SUN Zhan-Xiang, NIU Shi-Wei, CAI Qian,AN Jing-Wen. Effects of Straw Returning Combined with Nitrogen Fertilizer on Photosynthetic Performance and Yield of Spring Maize in Northeast China [J]. Acta Agron Sin, 2017, 43(12): 1845-1855.
[13] LI Guang-Yan,WANG Qing-Yan,XU Yan-Li,LU Lin,Jiao Liu,DONG Xue-Rui,DONG Zhi-Qiang. Effect of Plant Growth Regulators on Key Enzymes in Sucrose Metabolism of Ear Leaf and Grain at Filling Stage of Spring Maize [J]. Acta Agron Sin, 2016, 42(08): 1215-1223.
[14] LU Hai-Dong,XUE Ji-Quan,HAO Yin-Chuan,ZHANG Ren-He,GAO Jie. Effects of Sowing Time on Spring Maize (Zea mays L.) Growth and Water Use Efficiency in Rainfed Dryland [J]. Acta Agron Sin, 2015, 41(12): 1906-1914.
[15] GE Jun-Zhu,LI Shu-Ya,ZHONG Xin-Yue,YUAN Guo-Yin,XU Ying,TIAN Shao-Yang,CAO Cou-Gui,ZHAI Zhong-Bing,LIU Shi-Qing,ZHAN Ming,ZHAO Ming. Effects of Nitrogen Application and Film Mulching on Yield Performance Parameters and Nitrogen Use Efficiency of Spring Maize in the Middle Reaches of Yangtze River [J]. Acta Agron Sin, 2014, 40(06): 1081-1092.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!