Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (7): 1076-1086.doi: 10.3724/SP.J.1006.2020.94159

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Biological characteristics and cytological studies on anther abortion of male sterile Camellia crassocolumna

JIANG Hui-Bing,YANG Sheng-Mei,LIU Yu-Fei,TIAN Yi-Ping,SUN Yun-Nan,CHEN Lin-Bo,TANG Yi-Chun()   

  1. Tea Research Institute, Yunnan Academy of Agricultural Sciences / Yunnan Provincial Key Laboratory of Tea Science, Menghai 666201, Yunnan, China
  • Received:2019-10-24 Accepted:2020-03-24 Online:2020-07-12 Published:2020-04-14
  • Contact: Yi-Chun TANG E-mail:tyc188@126.com
  • Supported by:
    National Natural Science Foundation of China(31760224)

Abstract:

The purpose of this study was to explore the flower morphology, anther and pollen abortion time and its cytological characteristics in male sterile plants of C. crassocolumna. The flowering process, floral morphology, anther structure, meiosis and microsporogenesis of male sterile (M350) and fertile plants (M352) of C. crassocolumna were observed by stereomicroscopy, paraffin section, chromosome preparation and DAPI staining. The results showed that the wild tea plant had a perfect flower, its anthers were tetrasporangiate shaped like a butterfly, with an anther wall development of basic type. It tapetal cells were binuclear, forming secretory cells at the tetrad stage, and degrading during mononuclear pollen stage. After the meiosis I, meiosis II and cytokinesis, pollen mother cells developed into tetrahedral tetrads. Microspores were triangular, and mature pollen was two-celled. The stamens of male sterile flowers developed normally in the early stage of flower bud development, and there was no difference between sterile and fertile flowers, while in the late stage of flower bud development, filaments were curved, anthers adhered and shriveled, anthers could not release pollen. The tapetal cells of male sterile flowers were proliferation abnormally and disordly at the meiosis of stage pollen mother cells, and the degradation of tapetum was delayed during the mononuclear and binucleate pollen periods. During meiosis of pollen mother cells of male sterile flowers, there were some abnormal appearances, such as chromosome ring, lagging chromosomes, chromosome bridges, chromosomal deletion, scattered chromosomes, unequal separation, micronucleus and abnormal tetrad. In sterile plants, the microspore cytoplasm was disorder, pollen grains adhered to each other at the mononuclear stage, pollen wall crumpled and deformed, cytoplasm and nucleus of pollen were blurred, the mature pollen cells were hollow and sunken. Taken together, the floral organ morphology of male sterile plants in C. crassocolumna belongs to stamen collapse type and anther abnormality type. The development of anthers is blocked from meiosis of pollen mother cells to uninucleate pollen stage, belonging to pollen mother cell abortion type and uninucleate pollen abortion type. Mononuclear period is the main period of anther abortion. Tapetum degradation delayed, chromosomal abnormalities of pollen mother cells in meiosis, and abnormal development of microspores and pollens, might be the main reasons for anther abortion in male sterile plants of C. crassocolumna.

Key words: Camellia crassocolumna, male sterility, anther, morphology, cytology

Fig. 1

Flower morphology of fertile plant M352 and male sterile plant M350 A: fertile plant M352; B: male sterile plant M350."

Table 1

Comparison of flower traits between fertile plant M352 and male sterile plant M350"

植株
Plant
花冠直径
Expansion
of corolla (cm)
花瓣长
Length of petal (cm)
花瓣宽
Width of petal (cm)
外轮花丝长
Length of out thrum (cm)
内轮花丝长
Length of inside thrum (cm)
花柱长
Length of style (cm)
雄蕊数量
Number of stamen (No.)
可育株M352
Fertile plant M352
7.28±0.57 a 3.53±0.30 a 2.80±0.24 a 1.66±0.18 a 0.94±0.18 a 1.61±0.18 a 190.62±16.37 a
不育株M350
Sterile plant M350
6.94±0.51 a 3.20±0.28 a 3.07±0.34 a 1.37±0.13 b 0.65±0.14 b 1.73±0.21 a 184.85±18.52 a

Fig. 2

Comparison of buds development between fertile plant M352 and male sterile plant M350 A-E: fertile plant M352; F-J: sterile plant M350. A and F: pollen mother cell stage; B and G: meiotic stage; C and H: uninucleate stage; D and I: binucleate stage; E and J: flowering stage."

Fig. 3

Anther pollen development process of fertile plant M352 A: spore-forming cell stage; B: pollen mother cell stage; C: meiosis stage; D: tetrad stage; E: uninucleate stage; F: binucleate stage; G and H: mature stage. Ep: epidermis; En: endothecium; ML: middle layer; T: tapetum; Sc: sporogenous cell; Pmc: pollen mother cell; Tds: tetrads; Mpg: mononuclear pollen grain; Bpg: binuclear pollen grains; Pg: mature pollen grain."

Fig. 4

Anther abortion process of male sterile plant M350 A: spore-forming cell stage; B: pollen mother cell stage; C: meiosis stage; D: tetrad stage; E: uninucleate stage; F: binucleate stage; G and H: mature stage. Ep: epidermis; En: endothecium; ML: middle layer; T: tapetum; Sc: sporogenous cell; Pmc: pollen mother cell; Mc: meiotic cell; Tds: tetrads; Mpg: mononuclear pollen grain; Bpg: binuclear pollen grains."

Fig. 5

Normal meiosis of pollen mother cells of fertile plant M352 A: interphase I ; B: prophase I leptotene; C: prophase I zygotene; D: prophase I pachytene; E: prophase I diplotene; F: prophase I diakinesis; G: metaphase I ; H: anaphase I ; I: telophase I; J: prophase II; K: metaphase II; L: anaphase II; M: tetrahedral II; N: tetrad stage; O: asynchronism meiotic."

Fig. 6

Abnormal meiosis of pollen mother cells of male sterile plant M350 A-C: annular and clavate univalent; D-G: multi-chromosome bridges and single chromosome bridge; H-K: laggard chromosomes; L: deletion chromosomes; M-P: scattered chromosomes; Q and R: meiotic asynchronous; S: mis-orientated chromosomes; T-V: micronucleus; W: trisomy; X and Y: polynuclear tetrad."

Table 2

Frequency of abnormal chromosome behavior in meiosis of fertile plant M352 and male sterile plant M350"

减数分裂时期
Meiosis stage
可育株M352 Fertile plant M352 雄性不育株M350 Male sterile plant M350
统计细胞数
Number of cells examined
异常细胞数量
Number of
abnormal cells
频率
Frequency (%)
统计细胞数
Number of cells examined
异常细胞数量
Number of abnormal cells
频率
Frequency
(%)
前期I Prophase I 177 20 11.30 205 47 22.93
中期I Metaphase I 90 16 17.78 97 36 37.11
后期I Anaphase I 87 13 14.94 92 44 47.83
末期I Telophase I 113 16 14.16 124 52 41.94
前期II Prophase II 98 12 12.24 108 48 44.44
中期II Metaphase II 72 11 15.28 93 33 35.48
后期II Anaphase II 93 12 12.90 105 40 38.10
末期II Telophase II 85 9 10.59 95 32 33.68
四分体时期 Tetrad 198 27 13.64 220 97 44.09

Fig. 7

Comparison of microspores development between fertile plant M352 and male sterile plant M350 A-E: fertile plant M352; F-J: sterile plant M350. A and F: tetrad stage; B and G: early uninucleate stage; C and H: uninucleate stage; D and I: later uninucleate stage; E and J: binucleate stage."

[1] Zhao D W, Yang J B, Yang S X, Kato K, Luo J P. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers. BMC Plant Biol, 2014,14:14-25.
doi: 10.1186/1471-2229-14-14 pmid: 24405939
[2] Huang H, Shi C, Liu Y, Mao S Y, Gao L Z. Thirteen Camellia chloroplast genome sequences determined by high throughput sequencing: genome structure and phylogenetic relationships. BMC Evol Biol, 2014,14:151-168.
doi: 10.1186/1471-2148-14-151 pmid: 25001059
[3] Yang H, Wei C L, Liu H W, Wu J L, Li Z G, Zhang L, Jian J B, Li Y Y, Tai Y L, Zhang J, Zhang Z Z, Jiang C J, Xia T, Wan X C. Genetic divergence between Camellia sinensis and its wild relatives revealed via genome wide SNPs from RAD sequencing. PLoS One, 2016,11:e0151424.
doi: 10.1371/journal.pone.0151424 pmid: 26962860
[4] 王芳权, 范方军, 夏士健, 宗寿余, 郑天清, 王军, 李文奇, 许扬, 陈智慧, 蒋彦婕, 陶亚军, 仲维功, 杨杰. 水稻光温敏核不育基因tms5pms3的互作效应. 作物学报, 2020,46:317-329.
Wang F Q, Fan F J, Xia S J, Zong S Y, Zheng T Q, Wang J, Li W Q, Xu Y, Chen Z H, Jiang Y J, Tao Y J, Zhong W G, Yang J. Interactive effects of the photoperiod-/thermo-sensitive genic male sterile genes tms5 and pms3 in rice. Acta Agron Sin, 2020,46:317-329 (in Chinese with English abstract).
[5] Chen L, Liu Y G. Male sterility and fertility restoration in crops. Annu Rev Plant Biol, 2014,65:579-606.
pmid: 24313845
[6] Zhang D D, Liu D, Lyu X M, Wang Y, Xun Z L, Liu Z X, Li F L, Lu H. The cysteine protease CEP, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. Plant Cell, 2014,26:2939-2961.
doi: 10.1105/tpc.114.127282 pmid: 25035401
[7] Lu P L, Chai M F, Yang J, Ning G, Wang G L, Ma H. The Arabidopsis CALLOSE DEFECTIVE MICROSPORE1 gene is required for male fertility through regulating callose metabolism during microsporogenesis. Plant Physiol, 2014,164:1893-1904.
doi: 10.1104/pp.113.233387 pmid: 24567187
[8] 谢潮添, 魏冬梅, 田惠桥. 高等植物雄性不育的细胞生物学研究进展. 植物生理与分子生物学学报, 2006,32:17-23.
Xie C T, Wei D M, Tian H Q. Advances in cell biological researches on male sterility of higher plants. J Plant Physiol Mol Biol, 2006,32:17-23 (in Chinese with English abstract).
[9] 刘子涵, 蒙立颖, 姚盟, 宋喜悦. 牡山羊草细胞质雄性不育小麦败育的生物学特性和细胞学研究. 中国农业大学学报, 2016,21(5):1-9.
Liu Z H, Meng L Y, Yao M, Song X Y. Biological characteristics and cytological studies on abortion of Aegilops juvenalis cytoplasmic male sterile line. J China Agric Univ, 2016,21(5):1-9 (in Chinese with English abstract).
[10] 陈雪平, 罗双霞, 轩淑欣, 张成合, 申书兴. 茄子雄性不育系花粉败育的细胞学观察. 植物遗传资源学报, 2013,14:754-758.
Chen X P, Luo S X, Xuan S X, Zhang C H, Shen S X. Cytological observation of pollen abortion in eggplant male-sterile lines. J Plant Genet Resour, 2013,14:754-758 (in Chinese with English abstract).
[11] 葛娟, 郭英芬, 于澄宇, 张国云, 董军刚, 董振生. 甘蓝型油菜光、温敏雄性不育系Huiyou 50S花粉败育的细胞学观察. 作物学报, 2012,38:541-548.
Ge J, Guo Y F, Yu C Y, Zhang G Y, Dong J G, Dong Z S. Cytological observation of anther development of photoperiod/ thermosensitive male sterile line Huiyou 50S in Brassica napus. Acta Agron Sin, 2012,38:541-548 (in Chinese with English abstract).
[12] 余梅, 江昌俊, 房婉萍, 叶爱华, 王朝霞, 李叶云, 朱林. 茶树花蕾14-3-3蛋白基因的分子克隆及差异表达分析. 中国农业科学, 2008,41:2983-2991.
Yu M, Jiang C J, Fang W P, Ye A H, Wang Z X, Li Y Y, Zhu L. Cloning and analysis of differential expression of a 14-3-3 protein gene from tea flower bud. Sci Agric Sin, 2008,41:2983-2991 (in Chinese with English abstract).
[13] 陈林波, 夏丽飞, 田易萍, 李梅, 宋维希, 梁名志, 江昌俊. 基于数字基因表达谱分析的茶树花不育基因挖掘. 作物学报, 2017,43:211-218.
Chen L B, Xia L F, Tian Y P, Li M, Song W X, Liang M Z, Jiang C J. Exploring sterility gene from tea plant flower based on digital gene expression profiling. Acta Agron Sin, 2017,43:211-218 (in Chinese with English abstract).
[14] 江昌俊, 王镇恒. 茶树胚胎发育的解剖学研究. 茶叶科学, 1987,7(2):23-28.
Jiang C J, Wang Z H. Anatomical studies on the development of the embryo of tea pant. J Tea Sci, 1987,7(2):23-28 (in Chinese with English abstract).
[15] 施雁飞, 游新才, 张逸, 吕天航, 张今今. 茶树花芽分化解剖与形态学研究. 陕西师范大学学报(自然科学版), 2015,43(2):70-73.
Shi Y F, You X C, Zhang Y, Lyu T H, Zhang J J. Anatomy and morphological observation on flower bud differentiation of Camellia sinensis. J Shaanxi Nor Univ (Nat Sci Edn), 2015,43(2):70-73 (in Chinese with English abstract).
[16] 赵海燕, 黄晋玲. 棉花雄性不育材料亚棉A的小孢子败育研究. 中国农业科学, 2012,45:4130-4140.
Zhao H Y, Huang J L. Study on microspore abortion of male sterile cotton Yamian A and Yamian B. Sci Agric Sin, 2012,45:4130-4140 (in Chinese with English abstract).
[17] 高居荣, 宋雪皎, 王树芸, 韩秀兰, 谷淑波, 樊广华, 张吉旺. 花粉母细胞减数分裂细胞及染色体变化研究. 实验室科学, 2017,20(6):6-9.
Gao J R, Song X J, Wang S Y, Han X L, Gu S B, Fan G H, Zhang J W. Study on the changes of cells and chromosomes in pollen mother cells meiosis. Lab Sci, 2017,20(6):6-9 (in Chinese with English abstract).
[18] 彭真, 程琳, 何艳军, 王洁, 关小燕, 刘松瑜, 卢钢. 高温影响番茄小孢子发育的细胞学研究. 生态学报, 2013,33:2084-2092.
Peng Z, Cheng L, He Y J, Wang J, Guan X Y, Liu S Y, Lu G. Cytological study on microsporogenesis of Solanum lycopersicum var. Micro-Tom under high temperature stress. Acta Ecol Sin, 2013,33:2084-2092 (in Chinese with English abstract).
[19] 张迟, 张敏, 朱铨, 刘志辉, 颜福花, 吴连海, 徐象华, 周晓音, 陈翔. 瓯柑及其无子突变体花粉发育的细胞学观察. 果树学报, 2014,31:265-269.
Zhang C, Zhang M, Zhu Q, Liu Z H, Yan F H, Wu L H, Xu X H, Zhou X Y, Chen X. Cytological observation of pollen development in ‘Ougan’ (Citrus suavissima Hort. ex Tanaka) and its seedless mutant. J Fruit Sci, 2014,31:265-269 (in Chinese with English abstract).
[20] 陶兴林, 侯栋, 朱惠霞, 刘明霞, 张金文, 胡立敏. 花椰菜温敏雄性不育系GS-19花药败育的细胞学及转录组分析. 中国农业科学, 2017,50:2538-2552.
Tao X L, Hou D, Zhu H X, Liu M X, Zhang J W, Hu L M. Transcriptome and cytological researches on the anther abortion of a thermo-sensitive genic male sterile line GS-19 in cauliflower. Sci Agric Sin, 2017,50:2538-2552 (in Chinese with English abstract).
[21] 刘子涵, 石晓艺, 闫鹏娇, 段阳, 耿兴侠, 叶佳丽, 李莎, 杨雪桐, 张高明, 贾雨林, 张玲丽, 宋喜悦. D2型细胞质雄性不育小麦绒毡层细胞程序化死亡与活性氧代谢 . 中国农业科学, 2017,50:4071-4086.
Liu Z H, Shi X Y, Yan P J, Duan Y, Geng X X, Ye J L, Li S, Yang X T, Zhang G M, Jia Y L, Zhang L L, Song X Y. Tapetal programmed cell death, antioxidant response and oxidative stress in wheat anthers associated with D2-type cytoplasmic male-sterility . Sci Agric Sin, 2017,50:4071-4086 (in Chinese with English abstract).
[22] 刘望舒, 韩林芝, 朱嵊, 潘惠新. 杨树雄性不育品种花粉发育过程的细胞学观察. 南京林业大学学报(自然科学版), 2019,43(1):202-207.
Liu W S, Han L Z, Zhu C, Pan H X. Cytological observation on pollen development of the male sterile poplar variety. J Nanjing For Univ (Nat Sci Edn), 2019,43(1):202-207 (in Chinese with English abstract).
[23] 何金华, 程杏安, 陈志雄, 郭海滨, 刘向东, 卢永根. 同源四倍体水稻花粉母细胞减数分裂期间微管骨架组织和结构变化. 作物学报, 2010,36:1777-1785.
He J H, Cheng X A, Chen Z X, Guo H B, Liu X D, Lu Y G. Changes in the pattern of organization of microtubules during meiosis in pollen mother cell of autotetraploid rice. Acta Agron Sin, 2010,36:1777-1785 (in Chinese with English abstract).
[24] 李东霄, 李淦, 冯素伟, 茹振钢. 温敏核不育小麦可育和不育花药的细胞化学观察. 作物学报, 2013,39:878-884.
Li D X, Li G, Feng S W, Ru Z G. Cytochemical observation of fertile and sterile anthers of thermo-sensitive genic male-sterile wheat. Acta Agron Sin, 2013,39:878-884 (in Chinese with English abstract).
[25] 李雪, 陈丽梅, 杜捷, 梁万福, 幸亨泰. 兰州百合小孢子母细胞减数分裂异常现象的观察. 西北植物学报, 2003,23:1796-1799.
Li X, Chen L M, Du J, Liang W F, Xing H T. Observations on abnormal meiosis of pollen mother cells in Lilium davidii var. Unicolor. Acta Bot Boreali-Occident Sin, 2003,23:1796-1799 (in Chinese with English abstract).
[26] 卢永根, 冯九焕, 刘向东, 徐雪宾. 水稻(Oryza sativa L.)花粉及花药壁发育的超微结构研究. 中国水稻科学, 2002,16:29-37.
Lu Y G, Feng J H, Liu X D, Xu X B. Ultrastructural studies on the developmental process of pollen and anther in rice (Oryza sativa L.). Chin J Rice Sci, 2002,16:29-37 (in Chinese with English abstract).
[27] 谢潮添, 杨延红, 葛丽丽, 王瑞, 田惠桥. 白菜核雄性不育花药超微结构的研究. 实验生物学报, 2005,38:501-512.
Xie C T, Yang Y H, Ge L L, Wang R, Tian H Q. The ultrastructural observation of anthers of Chinese cabbage’s male-sterility. Acta Biol Exp Sin, 2005,38:501-512 (in Chinese with English abstract).
[1] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[2] WANG Na, BAI Jian-Fang, MA You-Zhi, GUO Hao-Yu, WANG Yong-Bo, CHEN Zhao-Bo, ZHAO Chang-Ping, ZHANG Ling-Ping. Cloning and expression analysis of lncRNA27195 and its target gene TaRTS in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(8): 1417-1426.
[3] ZHOU Bu-Jin, LI Gang, JIN Gang, ZHOU Rui-Yang, LIU Dong-Mei, TANG Dan-Feng, LIAO Xiao-Fang, LIU Yi-Ding, ZHAO Yan-Hong, WANG Yi-Ning. Creation of male sterile germplasm using the partial length gene of HcPDIL5-2a in kenaf [J]. Acta Agronomica Sinica, 2021, 47(6): 1043-1053.
[4] WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868.
[5] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[6] CHEN Miao, XIE Sai, WANG Chao-Zhi, LI Yan-Long, ZHANG Xian-Long, MIN Ling. Mechanism of GhPIF4 regulating anther abortion under high temperature stress in cotton [J]. Acta Agronomica Sinica, 2020, 46(9): 1368-1379.
[7] Wei BAI,Zhan-Xiang SUN,Li-Zhen ZHANG,Jia-Ming ZHENG,Liang-Shan FENG,Qian CAI,Wu-Yan XIANG,Chen FENG,Zhe ZHANG. Effects of plough layer construction on soil three phase rate and root morphology of spring maize in northeast China [J]. Acta Agronomica Sinica, 2020, 46(5): 759-771.
[8] Fang-Quan WANG,Fang-Jun FAN,Shi-Jian XIA,Shou-Yu ZONG,Tian-Qing ZHENG,Jun WANG,Wen-Qi LI,Yang XU,Zhi-Hui CHEN,Yan-Jie JIANG,Ya-Jun TAO,Wei-Gong ZHONG,Jie YANG. Interactive effects of the photoperiod-/thermo-sensitive genic male sterile genes tms5 and pms3 in rice [J]. Acta Agronomica Sinica, 2020, 46(3): 317-329.
[9] Jun-Hua LIU, Zheng-Feng WU, Pu SHEN, Tian-Yi YU, Yong-Mei ZHENG, Xue-Wu SUN, Lin LI, Dian-Xu CHEN, Cai-Bin WANG, Shu-Bo WAN. Effects of nitrogen and density interaction on root morphology, plant characteristic and pod yield under single seed precision sowing in peanut [J]. Acta Agronomica Sinica, 2020, 46(10): 1605-1616.
[10] Bi-Tao MOU,Zhuo-Fan ZHAO,Ling YUE,Chuan LI,Jun ZHANG,Zhang-Bo LI,Han SHEN,Mo-Ju CAO. Identification of fertility restoration and molecular mapping of restorer genes in two maize restore lines of CMS-C [J]. Acta Agronomica Sinica, 2019, 45(2): 225-234.
[11] Hong LIU,Zhen-Jiang XU,De-Hua RAO,Qing LU,Shao-Xiong LI,Hai-Yan LIU, ,Xuan-Qiang LIANG,Yan-Bin HONG. Genetic diversity analysis and distinctness identification of peanut cultivars based on morphological traits and SSR markers [J]. Acta Agronomica Sinica, 2019, 45(1): 26-36.
[12] Qing-Qing YAN,Ju-Song ZHANG,Xing-Xing LI,Yan-Ti WANG. Effects of salinity stress on seed germination and root growth of seedlings in island cotton [J]. Acta Agronomica Sinica, 2019, 45(1): 100-110.
[13] Quan ZHOU, Long-Chang WANG, Shu-Min MA, Xiao-Duan ZHANG, Yi XING, Sai ZHANG. Influences of Rape Intercropping with Chinese Milk Vetch and Straw Mulching on Productive Benefits in Dryland of Southwest China [J]. Acta Agronomica Sinica, 2018, 44(03): 431-441.
[14] Wei ZHANG, Mi-Qi YIN, Pei ZHAO, Ke WANG, Li-Pu DU, Xing-Guo YE. Regeneration Capacity Evaluation of Some Largely Popularized Wheat Varieties in China [J]. Acta Agronomica Sinica, 2018, 44(02): 208-217.
[15] ZHOU Yong,TAO Ya-Jun,YAO Rui,LI Chang,TAN Wen-Chen,YI Chuan-Deng,GONG Zhi-Yun, LIANG Guo-Hua*. QTL Mapping for Leaf Morphological Traits of Rice Using Chromosome Segment Substitution Lines [J]. Acta Agron Sin, 2017, 43(11): 1650-1657.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!