Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (7): 1063-1075.doi: 10.3724/SP.J.1006.2020.93065

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of 5-aminolevulinic acid and ethephon compound on carbon balance of source-sink of spring maize in Northeast China

LI Rui-Jie1,2,TANG Hui-Hui2,WANG Qing-Yan2,XU Yan-Li2,WANG Qi2,LU Lin2,YAN Peng2,DONG Zhi-Qiang2,*(),ZHANG Feng-Lu1,*()   

  1. 1,# College of Agronomy, Hebei Agricultural University / State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding 071001, Hebei, China
    2,# Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Eco-physiology and Cultivation, Beijing 100081, China
  • Received:2019-12-25 Accepted:2020-04-15 Online:2020-07-12 Published:2020-04-26
  • Contact: Zhi-Qiang DONG,Feng-Lu ZHANG E-mail:dongzhiqiang@caas.cn;nxyumi@hebau.edu.cn
  • Supported by:
    National Key Research and Development Program(2017YFD0201301);National Key Research and Development Program(2016YFD0300300);National Natural Science Foundation of China Face Project(31470087)

Abstract:

In order to explore the mechanism of 5-aminolevulinic acid (5-ALA) and ethephon (ETH) compound for alleviating chilling damage, and to establish a chemical controlled cultivation technique for cold tolerance, dense planting and stable production of spring maize (Zea mays L.) in Northeast China, we conducted a field experiment at Gongzhuling Experiment Station (43o9'55"N, 124o48'43"E) of Jilin province, China, in 2018 and 2019. The maize (cv. Zhongdan 909) plants were treated with mixture of 5-ALA and ETH at different concentrations by foliar spraying at the jointing stage (V6). The source-sink metabolism, grain filling rate and yield of spring maize were evaluated. The yield of plants treated with 22.50 g hm-2 5-ALA combined with 450 g hm-2 ETH (A2E1) was significantly increased by 4.8% compared with the control. A2E1 promoted the synthesis of sucrose in functional leaf before anthesis. The sucrose phosphate synthase (SPS) activity and sucrose content in functional leaf were increased by 5.4% and 7.9% by A2E1 treatment, in comparison with the control, respectively. A2E1 treatment promoted the transport of sucrose from leaf to kernel during the first 20 days after anthesis, showing that the sucrose content decreased by 14.4% in the ear leaf, but increased by 41.4% in kernel. In addition, A2E1 also promoted sucrose degradation in grain. Sucrose synthase (SS) activity in the direction of decomposition was increased by 12.5% compared with the control, and the activities of acid invertase (AI) and neutral invertase (NI) were increased by 52.8% and 24.1%, respectively, during early grain-filling stage (about 10 days after anthesis). In this case, spring maize under A2E1 treatment had a relatively higher maximum grain-filling rate than the control treatment. At harvest, ear length and kernel number per ear were 4.7% longer and 8.6% higher, respectively, and the bare tip length was 58.3% shorter than those of the control. In conclusion, 5-ALA-ETH can effectively improve the transportation of sucrose between source and sink of spring maize in Northeast China, accelerate the kernel filling and alleviate the effect of chilling damage during the growing period, which is of great guarantee to a high and stable yield of spring maize in this region.

Key words: 5-ALA-ETH compound, spring maize, chilling damage, sucrose metabolism, yield

Fig. 1

Daily total rainfall distribution (bar) and daily mean air temperature (line) during spring maize growth stage at Gongzhuling Experimental Station in 2018 and 2019"

Table 1

Amount of 5-aminolevulinic and ethephon used under different treatments in 2018 and 2019"

处理
Treatment
5-氨基乙酰丙酸
5-ALA (g hm-2)
乙烯利
ETH (mL hm-2)
CK 0 0
A1 11.25 0
A2 22.50 0
A3 33.75 0
E1 0 450
A1E1 11.25 450
A2E1 22.50 450
A3E1 33.75 450
E2 0 900
A1E2 11.25 900
A2E2 22.50 900
A3E2 33.75 900

Fig. 2

Effects of 5-ALA, ETH, and 5-ALA-ETH on sucrose content in functional leaves of maize in 2018 V9: vegetative 9th leaf; V12: trumpet Stage; VT: silking stage; VT+10: the 10th day after silking; VT+20: the 20th day after silking; VT+30: the 30th day after silking; VT+40: the 40th day after silking; treatments are the same as those given in Table 1."

Fig. 3

Effects of 5-ALA, ETH, and 5-ALA-ETH on the activity of sucrose synthase (SS, synthetic direction) in 2018 V9: vegetative 9th leaf; V12: trumpet Stage; VT: silking stage; VT+10: the 10th day after silking; VT+20: the 20th day after silking; VT+30: the 30th day after silking; VT+40: the 40th day after silking; treatments are the same as those given in Table 1."

Fig. 4

Effects of 5-ALA, ETH, and 5-ALA-ETH on the activity of sucrose phosphate synthase (SPS) in 2018。。。"

Fig. 5

Effects of 5-ALA, ETH, and 5-ALA-ETH on sucrose content in grains in 2018 Treatments are the same as those given in Table 1."

Fig. 6

Effects of 5-ALA, ETH, and 5-ALA-ETH on the activity of sucrose synthase (SS, cleavage direction) in 2018 Treatments are the same as those given in Table 1."

Fig. 7

Effects of 5-ALA, ETH, and 5-ALA-ETH on the activity of acid invertase (AI) in 2018 Treatments are the same as those given in Table 1."

Fig. 8

Effects of 5-ALA, ETH, and 5-ALA-ETH on the activity of neutral invertase (NI) in 2018 Treatments are the same as those given in Table 1."

Table 2

Effects of 5-ALA, ETH, and 5-ALA-ETH on characteristic parameters of maize at grain-filling stage in 2018"

处理
Treatment
a b c r Tmax
(d)
Wmax
(g 100-kernel-1)
Gmax
(g 100-kernel-1 d-1)
P
(d)
CK 34.16 33.56 0.11 1.00 31.63 17.08 0.95 23.72
A1 35.78 32.13 0.11 1.00 32.84 17.89 0.95 24.93
A2 36.27 44.74 0.12 1.00 32.53 18.14 1.06 22.504
A3 35.87 31.02 0.11 1.00 31.72 17.93 0.97 24.33
E1 33.18 36.15 0.12 1.00 30.01 16.59 0.99 22.04
A1E1 36.72 36.12 0.11 1.00 33.41 18.36 0.99 24.53
A2E1 34.69 33.40 0.11 1.00 31.02 17.34 0.98 23.29
A3E1 34.30 33.07 0.11 0.99 31.81 17.15 0.94 23.95
E2 33.46 36.88 0.12 1.00 30.64 16.73 0.99 22.37
A1E2 35.68 30.32 0.11 0.99 32.41 17.84 0.94 25.02
A2E2 34.38 57.02 0.13 1.00 30.97 17.19 1.12 20.18
A3E2 33.69 33.79 0.11 0.99 31.87 16.85 0.93 23.85

Table 3

Effects of 5-ALA, ETH, and 5-ALA-ETH on yield and yield components of maize in 2018 and 2019"

年份
Year
处理
Treatment
穗长
Ear length
(cm)
秃尖长
Bare tip length
(cm)
穗粒数
Kernel number
(ear-1)
千粒重
1000-kernel weight (g)
单位面积穗数
Ear number
(m-2)
产量
Yield
(kg hm-2)
2018 CK 17.5±0.9 bc 0.6±0.3 ab 511.4±12.9 abc 337.6±3.1 ab 6.9±0.2 ab 11,928.4±262.3 bc
A1 17.6±0.8 abc 0.5±0.2 abcd 504.2±24.7 bc 339.7±4.9 a 7.1±0.3 ab 12,145.9±282.2 ab
A2 17.8±0.8 abc 0.4±0.2 bcd 520.4±23.3 ab 340.7±12.2 a 6.9±0.6 ab 12,233.0±428.1 ab
A3 17.6±1.0 abc 0.5±0.1 abc 503.8±31.8 bc 340.6±9.6 a 7.1±0.4 ab 12,114.6±233.9 ab
E1 18.5±0.4 a 0.2±0.2 d 537.7±24.3 a 336.8±6.5 ab 6.8±0.1 b 12,270.5±313.1 ab
A1E1 16.8±0.7 c 0.5±0.2 abc 482.2±25.3 c 344.5±11.5 a 7.4±0.3 a 12,266.0±304.0 ab
A2E1 18.3±0.8 ab 0.3±0.2 cd 539.8±27.0 a 335.9±4.0 ab 6.9±0.4 ab 12,497.1±137.7 a
A3E1 17.5±0.8 bc 0.4±0.2 bcd 506.4±28.3 bc 341.4±5.0 a 7.1±0.3 ab 12,277.9±237.0 ab
E2 18.3±0.6 ab 0.4±0.2 bcd 502.4±25.8 bc 334.9±4.8 ab 6.9±0.3 ab 11,549.7±162.1 c
A1E2 18.0±0.4 ab 0.4±0.3 abcd 491.9±19.6 bc 342.6±6.8 a 7.1±0.2 ab 11,932.2±80.8 bc
A2E2 18.0±0.6 ab 0.7±0.2 a 481.1±20.6 c 334.1±7.0 ab 7.3±0.1 ab 11,806.1±297.9 bc
A3E2 17.9±0.8 ab 0.5±0.2 abcd 505.5±19.4 bc 327.1±8.9 b 7.1±0.0 ab 11,789.9±222.8 bc
2019 CK 18.1±0.6 bc 1.2±0.2 abc 512.2±2.7 abcd 376.4±6.9 ab 6.9±0.0 b 13,357.5±233.8 bc
A1 17.8±0.6 c 0.9±0.1 c 498.3±15.7 cd 364.9±1.6 abc 7.5±0.4 ab 13,560.1±185.4 bc
A2 18.9±0.2 ab 1.4±0.1 a 527.1±27.7 abc 365.1±7.1 abc 7.0±0.4 b 13,506.3±165.8 bc
A3 18.4±0.6 abc 1.2±0.2 abc 504.7±32.9 bcd 378.7±3.1 a 6.9±0.6 b 13,169.1±275.4 c
E1 18.5±0.2 abc 1.0±0.3 bc 534.5±6.5 ab 360.6±12.4 abc 7.0±0.2 b 13,406.9±222.50 bc
A1E1 18.2±0.3 abc 1.1±0.1 abc 526.5±5.0 abcd 360.2±5.0 abc 7.2±0.1 ab 13,645.0±126.1 b
A2E1 19.1±0.4 a 0.6±0.3 d 544.1±27.3 a 371.9±4.7 abc 7.0±0.4 b 14,078.9±102.1 a
A3E1 18.5±0.7 abc 0.9±0.1 cd 492.8±1.5 d 357.6±12.8 bc 7.7±0.3 a 13,497.2±266.7 bc
E2 18.7±0.4 abc 1.0±0.2 abc 519.1±14.0 abcd 369.8±1.9 abc 6.9±0.2 b 13,218.0±105.3 bc
A1E2 18.4±0.4 abc 1.3±0.0 ab 508.4±4.0 bcd 371.4±9.9 abc 7.0±0.3 b 13,231.4±348.6 bc
A2E2 18.2±0.3 abc 0.9±0.2 bc 543.3±18.2 a 354.9±21.7 c 7.0±0.2 b 13,466.9±296.3 bc
A3E2 18.3±0.4 abc 1.1±0.1 abc 522.8±14.7abcd 363.1±15.8 abc 7.0±0.5 b 13,294.5±149.6 bc
变异来源 Source of variation
年份Year ** ** * ** ns **
5-ALA * ** ns ** ns **
ETH ns ** ns ** ns **
5-ALA×ETH ** ** * ** ns **
[1] 刘志娟, 杨晓光, 吕硕, 王静, Lin X M. 东北三省春玉米产量差时空分布特征. 中国农业科学, 2017,50:1606-1616.
doi: 10.3864/j.issn.0578-1752.2017.09.006
Liu Z J, Yang X G, Lyu S, Wang J, Lin X M. Temporal and spatial distribution characteristics of spring maize yield difference in three provinces of northeast China. Sci Agric Sin, 2017,50:1606-1616 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.09.006
[2] 毛留喜, 魏丽. 大宗作物气象服务手册. 北京: 气象出版社, 2015. pp 46-52.
Mao L X, Wei L. Bulk Crop Weather Service Manual. Beijing: China Meteorological Press, 2015. pp 46-52(in Chinese).
[3] 张君. 孕穗期地下部低温对节水栽培水稻生理和产量的影响机制. 石河子大学博士学位论文, 新疆石河子, 2018.
Zhang J. Effect of Low Temperature in Underground Part of Rice at Booting Stage on Physiology and Yield of Water-saving Cultivation Rice. PhD Dissertation of Shihezi University, Shihezi, Xinjiang, China, 2018 (in Chinese with English abstract).
[4] 徐田军, 董志强, 高娇, 陈传晓, 焦浏, 解振兴. 聚糠萘水剂对不同积温带玉米叶片衰老和籽粒灌浆速率的影响. 作物学报, 2012,38:1698-1709.
doi: 10.3724/SP.J.1006.2012.01698
Xu T J, Dong Z Q, Gao J, Chen C X, Jiao L, Xie Z X. Effects of polyfuran naphthalene on leaf senescence and grain filling rate of maize in different accumulated temperature zones. Acta Agron Sin, 2012,38:1698-1709 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.01698
[5] 罗玉. 植物中的糖代谢及其相关酶. 文山师范高等专科学校学报, 2004, (2):155-159.
Luo Y. Carbohydrate metabolism and related enzymes in plants. J Wenshan Tech Coll, 2004, (2):155-159 (in Chinese with English abstract).
[6] 陈传晓. 不同积温带春玉米碳代谢机理及化学调控效应的研究. 河北农业大学硕士学位论文, 河北保定, 2013.
Chen C X. Study on Carbon Metabolism Mechanism and Chemical Regulation Effect of Spring Maize in Different Accumulated Temperature Zones. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2013 (in Chinese with English abstract).
[7] 高文瑞, 徐刚, 李德翠, 王显生, 孙艳军, 韩冰, 史珑燕. 外源5-氨基乙酰丙酸(ALA)对辣椒幼苗抗冷性的影响. 西南农业学报, 2015,28:2205-2208.
Gao W R, Xu G, Li D C, Wang X S, Sun Y J, Han B, Shi L Y. Effects of exogenous 5-aminolevulinic acid (ALA) on chilling resistance of pepper seedlings.J Southwest Agric Sci, 28:2205-2208 (in Chinese with English abstract).
[8] 安玉艳, 张丽颖, 冯新新, 田凡, 李洁, 汪良驹. 5-氨基乙酰丙酸对苹果叶片耐弱光能力的影响. 西北植物学报, 2016,36:987-995.
An Y Y, Zhang L Y, Feng X X, Tian F, Li J, Wang L J. Effects of 5-aminolevulinic acid on low light tolerance of apple leaves. Acta Bot Bor-Occid Sin, 2016,36:987-995 (in Chinese with English abstract).
[9] 姚侠妹, 张瑞娥, 偶春, 刘晓丽, 王振, 常二梅. 外源5-氨基乙酰丙酸对盐胁迫下栀子幼苗生理特性的影响. 东北林业大学学报, 2015,43(4):37-41.
Yao X M, Zhang R E, Ou C, Liu X L, Wang Z, Chang E M. Effects of exogenous 5-aminolevulinic acid on physiological characteristics of Gardenia jasminoides seedlings under salt stress. J Northeast For Univ, 2015,43(4):37-41 (in Chinese with English abstract).
[10] 汪良驹, 姜卫兵, 黄保健. 5-氨基乙酰丙酸对弱光下甜瓜幼苗光合作用和抗冷性的促进效应. 园艺学报, 2004,31:321-326.
Wang L J, Jiang W B, Huang B J. Effects of 5-aminolevulinic acid on photosynthesis and chilling resistance of muskmelon seedlings under low light. Acta Hortic Sin, 2004,31:321-326 (in Chinese with English abstract).
[11] 刘涛, 郭世荣, 徐刚, 高文瑞, 李德翠, 王虹. 5-氨基乙酰丙酸对辣椒植株低温胁迫伤害的缓解效应. 西北植物学报, 2010,30:2047-2053.
Liu T, Guo S R, Xu G, Gao W R, Li D C, Wang H. Mitigative effect of 5-aminolevulinic acid on chilling stress injury in pepper plants. Acta Bot Bor-Occid Sin, 2010,30:2047-2053 (in Chinese with English abstract).
[12] 李阳阳. 叶面喷施5-氨基乙酰丙酸对葡萄光合作用及蔗糖转化酶基因表达的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2018.
Li Y Y. Effects of Foliar Spraying 5-aminolevulinic Acid on Photosynthesis and Sucrose Invertase Gene Expression in Grapevine. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2018 (in Chinese with English abstract).
[13] 白文波, 吕国华, 张元成, 宋吉青, 刘星海, 李际会. 植物多糖类复合制剂对冬小麦产量及物质转运的影响. 应用生态学报, 2014,25:1006-1012.
Bai W B, Lyu G H, Zhang Y C, Song J Q, Liu X H, Li J H. Effect of Plant polysaccharide compound preparation on yield and matter transport of winter wheat. Chin J Appl Ecol, 2014,25:1006-1012 (in Chinese with English abstract).
[14] 唐会会, 许艳丽, 王庆燕, 马正波, 李光彦, 董会, 董志强. 叶面喷施5-氨基乙酰丙酸对不同密度春玉米生长特性和产量的影响. 作物杂志, 2019, (2):136-141.
Tang H H, Xu Y L, Wang Q Y, Ma Z B, Li G Y, Dong H, Dong Z Q. Effects of foliar spraying 5-aminolevulinic acid on growth characteristics and yield of spring maize with different densities. Crops, 2019, (2):136-141 (in Chinese with English abstract).
[15] 刘红开. 乙烯对绿豆芽下胚轴生长代谢的调控效应研究. 中国农业大学博士学位论文, 北京, 2014. pp 47-50.
Liu H K. Effects of Ethylene on Growth and Metabolism of Hypocotyl of Mung Bean Sprouts. PhD Dissertation of China Agricultural University, Beijing, China, 2014. pp 47-50 (in Chinese with English abstract).
[16] 康秀晗, 李欢, 刘聪聪, 王亚乐, 张家豪, 黄家权. 树干乙烯利处理对橡胶树叶片蔗糖代谢的影响. 分子植物育种, 2018,16:4395-4402.
Kang X H, Li H, Liu C C, Wang Y L, Zhang J H, Huang J Q. Effects of ethephon on sucrose metabolism in leaves of Hevea brasiliensis. Mol Plant Breed, 2018,16:4395-4402 (in Chinese with English abstract).
[17] 陈传永, 王荣焕, 赵久然, 徐田军, 王元东, 刘秀芝, 刘春阁, 裴志超, 成广雷, 陈国平. 不同生育时期遮光对玉米籽粒灌浆特性及产量的影响. 作物学报, 2014,40:1650-1657.
doi: 10.3724/SP.J.1006.2014.01650
Chen C Y, Wang R H, Zhao J R, Xu T J, Wang Y D, Liu X Z, Liu C G, Pei Z C, Cheng G L, Chen G P. Effects of shading at different growth stages on grain filling characteristics and yield of maize. Acta Agron Sin, 2014,40:1650-1657 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.01650
[18] 李光彦, 王庆燕, 许艳丽, 卢霖, 焦浏, 董学瑞, 董志强. 双重化控对春玉米灌浆期穗位叶和籽粒蔗糖代谢关键酶活性的影响. 作物学报, 2016,42:1215-1223.
doi: 10.3724/SP.J.1006.2016.01215
Li G Y, Wang Q Y, Xu Y L, Lu L, Jiao L, Dong X R, Dong Z Q. Effects of dual-control on key enzyme activities of sucrose metabolism in ear leaf and grain of spring maize during grain filling stage. Acta Agron Sin, 2016,42:1215-1223 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01215
[19] 赵智中, 张上隆, 徐昌杰, 陈昆松, 刘拴桃. 蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用. 园艺学报, 2001,28:112-118.
Zhao Z Z, Zhang S L, Xu S J, Chen K S, Liu S T. Role of sucrose-metabolizing enzymes in sugar accumulation in Satsuma mandarin fruit. Acta Hortic Sin, 2001,28:112-118 (in Chinese with English abstract).
[20] 张振清, 夏叔芳. 无机磷对叶片淀粉和蔗糖积累的影响. 植物生理学报, 1982,8:385-391.
Zhang Z Q, Xia S F. Effects of inorganic phosphorus on accumulation of starch and sucrose in leaves. Acta Physiol Sin, 1982,8:385-391 (in Chinese with English abstract).
[21] 杨广东, 赵宏伟, 谭福忠, 刘兴焱, 杨耿斌, 何长安. 不同品质类型春玉米子粒灌浆过程中功能叶片蔗糖代谢酶的研究. 黑龙江农业科学, 2006, (5):14-17.
Yang G D, Zhao H W, Tan F Z, Liu X Y, Yang G B, He C A. Studies on Sucrose metabolizing enzymes in functional leaves of different quality spring maize during grain filling. Heilongjiang Agric Sic, 2006, (5):14-17 (in Chinese with English abstract).
[22] 孙阳, 王燚, 曲丹阳, 李晶, 焦健, 曹鑫波, 顾万荣, 魏湜. 5-氨基乙酰丙酸提高玉米幼苗抗低温性及其生理机制. 生态学杂志, 2016,35:1737-1743.
Sun Y, Wang Y, Qu D Y, Li J, Jiao J, Cao X B, Gu W R, Wei S. Effects of 5-aminolevulinic acid on chilling resistance of maize seedlings and its physiological mechanism. Chin J Ecol, 2016,35:1737-1743 (in Chinese with English abstract).
[23] 张梦燕, 孙军利, 赵宝龙, 刘连玲, 罗英辉. 外源ALA对日光温室弗雷无核葡萄果实着色及相关酶活性的影响. 华北农学报, 2018,33(增刊):139-145.
Zhang M Y, Sun J L, Zhao B L, Liu L L, Luo Y H. Effects of exogenous AlA on fruit coloration and related enzyme activities of Frey seedless grape in solar greenhouse. Acta Agric Boreali-Sin, 2018,33(S1):139-145 (in Chinese with English abstract).
[24] 高聚林, 刘克礼. 春玉米植株体中蔗糖含量的变化. 华北农学报, 1993,8(1):29-34.
doi: 10.3321/j.issn:1000-7091.1993.01.006
Gao J L, Liu K L. Changes of sucrose content in spring maize plant. Acta Agric Boreali-Sin, 1993,8(1):29-34 (in Chinese with English abstract).
doi: 10.3321/j.issn:1000-7091.1993.01.006
[25] 陈炜, 李红兵, 邓西平. 不同栽培模式下冬小麦灌浆过程中旗叶蔗糖代谢和籽粒淀粉积累特性. 西北农业学报, 2018,27:641-649.
Chen W, Li H B, Deng X P. Sucrose metabolism and starch accumulation in flag leaves during winter wheat grouting under different cultivation modes. J Northwest Agric, 2018,27:641-649 (in Chinese with English abstract).
[26] 藏金萍, 赵艾佳, 赵亚林, 闫青地, 冯佳佳, 张海丽, 王凤茹, 董金皋. 油菜素内酯对玉米叶片捕光、CO2固定及有机物运输的影响. 中国农业科学, 2017,50:4228-4234.
doi: 10.3864/j.issn.0578-1752.2017.21.017
Zang J P, Zhao A J, Zhao Y L, Yan Q D, Feng J J, Zhang H L, Wang F R, Dong J G. Effects of brassinolide on light capture, CO2 fixation and organic matter transport in maize leaves. Sci Agric Sin, 2017,50:4228-4234 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.21.017
[27] Blum A. Improving wheat grain filling under stress by stem reserve mobilization. Euphytica, 1998,100:77-83.
doi: 10.1023/A:1018303922482
[28] Jiang D, Cao W X, Dai T B, Jing Q. Activities of key enzymes for starch synthesis in relation to growth of superior and inferior grains on winter wheat (Triticum aestivum L.) spike. Plant Growth Regul, 2003,41:247-257.
doi: 10.1023/B:GROW.0000007500.90240.7d
[29] 潘庆民, 于振文, 王月福, 余松烈. 追氮时期对小麦旗叶中蔗糖合成与籽粒中蔗糖降解的影响. 中国农业科学, 2002,35:771-776.
Pan Q M, Yu Z W, Wang Y F, Yu S L. Effects of nitrogen chasing on sucrose synthesis in flag leaf and sucrose degradation in grain of wheat. Sci Agric Sin, 2002,35:771-776 (in Chinese with English abstract).
[30] 吕英民, 张大鹏. 果实发育过程中糖的积累. 植物生理学通讯, 2000,36:258-265.
Lyu Y M, Zhang D P. Sugar accumulation during fruit development. Plant Physiol Commun, 2000,36:258-265 (in Chinese).
[31] 张明方, 李志凌. 高等植物中与蔗糖代谢相关的酶. 植物生理学通讯, 2002,38:289-295.
Zhang M F, Li Z L. Enzymes involved in sucrose metabolism in vascular plant. Plant Physiol Commun, 2002,38:289-295 (in Chinese).
[32] 胡宇, 梁烜赫, 赵鑫, 陈宝玉, 王洪君, 王楠, 孙孟琪, 具红光, 曹铁华. 低温冷凉区覆膜玉米子粒灌浆速率和产量特征分析. 玉米科学, 2019,27(5):95-100.
Hu Y, Liang X H, Zhao X, Chen B Y, Wang H J, Wang N, Sun M Q, Ju H G, Cao T H. Analysis on grain filling rate and yield characteristics of film-mulched maize in cold and low temperature region. J Maize Sci, 2019,27(5):95-100 (in Chinese with English abstract).
[33] 李美善, 刘宪虎, 许明子, 邱献锟, 赵孝东. ALA处理对水稻籽粒灌浆的影响. 延边大学农学学报, 2012,34:252-255.
Li M S, Liu X H, Xu M Z, Qiu X K, Zhao X D. Effect of ALA treatment on grain filling of rice. J Agric Sci Yanbian Univ, 2012,34:252-255 (in Chinese with English abstract).
[34] 程红玉, 肖占文, 宗盈晓, 任玉琴, 马燕. ALA叶面肥对春小麦光合特性和灌浆速率的影响. 麦类作物学报, 2018,38:572-577.
Cheng H Y, Xiao Z W, Song Y X, Ren Y Q, Ma Y. Effects of ALA foliar fertilizer on photosynthetic characteristics and grain filling rate of spring wheat. J Triticeae Crops, 2018,38:572-577 (in Chinese with English abstract).
[35] 王海永, 陈小文, 牛晓雪, 苏贺, 申婷婷, 董学会. 乙烯利对夏玉米果穗生长发育影响及生理机制探究. 玉米科学, 2014,22(5):64-70.
Wang H Y, Chen X W, Niu X X, Su H, Shen T T, Dong X H. Effects of ethephon on the growth and development of summer maize ear and its physiological mechanism. J Maize Sci, 2014,22(5):64-70 (in Chinese with English abstract).
[36] 李玲, 赵明, 李连禄, 董志强. 乙矮合剂对玉米产量和茎秆质量的影响. 作物杂志, 2007, (5):51-54.
Li L, Zhao M, Li L L, Dong Z Q. Effect of ethephon and chlormequat mixture on yield and stalk quality of maize. Crops, 2007, (5):51-54 (in Chinese).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!