Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (7): 1087-1098.doi: 10.3724/SP.J.1006.2020.92062

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains

HAN Zhan-Yu1,GUAN Xian-Yue1,ZHAO Qian1,WU Chun-Yan2,HUANG Fu-Deng2,PAN Gang1,CHENG Fang-Min1,*()   

  1. 1 College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
    2 Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
  • Received:2019-11-28 Accepted:2020-03-24 Online:2020-07-12 Published:2020-04-10
  • Contact: Fang-Min CHENG E-mail:chengfm@zju.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31871566);National Key Research and Development Program of China(2016YFD0300502);National Key Research and Development Program of China(2017YFD0300103)

Abstract:

Air temperature during grain-filling stage and application amount of nitrogen fertilizer are two of most important factors affecting rice grain quality, which largely related to grain protein content and cooking palatability. In this paper, the difference in grain protein content and its composition was investigated using different rice varieties, with different temperature treatments under artificial controlled condition and three nitrogen application levels in a long-term experiment field. Meanwhile, another experiment of two factors (temperature and nitrogen) in pot condition was conducted to clarity the interaction effects of temperature and nitrogen on grain protein content and its components. The higher temperature (HT) and heavier N application (HN) significantly enhanced the total protein content and glutelin accumulation in rice grain. However, HT differed obviously from HN in their impact on grain prolamin. HT significantly decreased grain prolamin concentration and markedly enhanced the ratio of glutelin to prolamin in rice grains, while HN increased in grain glutelin and prolamin contents had smaller effects on ratios of glutelin to prolamin and the proportion of subunit compositions in grain storage proteins. Furthermore, HT had a marked impact on the glutelin composition in rice grains, with the significant increase in 57 kD pro-glutelin amount. However, the effect of HT on 37 kD α-glutelin and 22 kD β-glutelin was greatly variable among different rice varieties. The varying extent of grain protein amount per grain (mg grain-1) affected by HT was much smaller than that of grain protein content (%). The combined effect of HT and HN on the total storage protein and glutelin accumulation in rice grain was much greater than the individual effect of HT and HN. The dropping extent of grain prolamin content under HT appeared to be smaller for HN relative to LN, suggesting that appropriate N application was beneficial to keep the relatively stable content of grain prolamin composition under the fluctuating temperature for rice growth.

Key words: rice (Oryza sativa L.), high temperature, nitrogen, storage protein, grain quality

Table 1

Differences in total protein and its component contents in rice kernels between two temperature treatments"

品种
Cultivar
处理
Treatment
相对含量Relative content (%) 绝对含量Accumulation amount (mg grain-1)
清蛋白
Albumin
球蛋白
Globulin
醇溶蛋白
Prolamin
谷蛋白
Glutelin
总蛋白
Total
protein
清蛋白
Albumin
球蛋白
Globulin
醇溶蛋白
Prolamin
谷蛋白
Glutelin
谷/醇比
Glu/Prol
浙恢7954
Zhehui 7954
NT 0.72 b 0.80 b 0.61 a 6.92 b 9.17 b 0.171 b 0.190 a 0.145 a 1.644 b 11.34 b
HT 1.06 a 0.95 a 0.57 b 7.83 a 10.29 a 0.221 a 0.199 a 0.122 b 1.678 a 13.74 a
黄华占
Huanghuazhan
NT 0.95 b 0.93 b 0.72 a 7.93 b 10.46 b 0.214 b 0.209 b 0.162 a 1.785 a 11.01 a
HT 1.15 a 1.02 a 0.65 b 8.21 a 10.83 a 0.253 a 0.225 a 0.143 b 1.810 a 12.63 a
秀水134
Xiushui 134
NT 1.06 a 0.96 a 0.56 a 6.53 b 8.97 b 0.233 a 0.211 a 0.123 a 1.442 b 11.71 b
HT 0.92 b 0.97 a 0.52 b 7.26 a 9.61 a 0.186 b 0.196 b 0.103 b 1.466 a 14.23 a
秀水09
Xiushui 09
NT 1.01 a 1.07 b 0.64 a 6.47 b 9.38 b 0.224 a 0.237 a 0.142 a 1.433 a 10.11 b
HT 0.98 a 1.12 a 0.57 b 7.24 a 10.15 a 0.195 b 0.221 b 0.113 b 1.439 a 12.70 a
9311 NT 0.89 a 0.97 a 0.57 a 7.32 b 10.67 b 0.209 b 0.228 a 0.130 a 1.724 a 12.84 b
HT 0.88 a 1.02 a 0.58 a 8.01 a 11.02 a 0.224 a 0.216 b 0.120 a 1.695 a 13.81 a
甬优2640
Yongyou 2640
NT 0.92 b 1.09 a 0.65 a 7.13 b 9.96 b 0.212 a 0.251 a 0.150 a 1.642 a 10.97 b
HT 0.99 a 1.18 a 0.54 b 7.46 a 10.35 a 0.216 a 0.258 a 0.123 b 1.632 a 13.81 a

Fig. 1

Differences in SDS-PAGE and relative optical density of storage protein between two temperature treatments NT and HT mean normal temperature regime and high temperature regime during grain filling, respectively. A and B mean SDS-PAGE and relative optical density of storage protein, respectively. For a same rice cultivar, bars indexed with the same small letters are not significantly different (P < 0.05) between NT and HT. Error bars represent SD values of three biological replicates."

Table 2

Differences in total protein and its component contents in rice kernels among different N treatment"

品种
Cultivar
处理
Treatment
相对含量Relative content (%) 绝对含量Accumulation amount (mg grain-1)
清蛋白Albumin 球蛋白Globulin 醇溶
蛋白Prolamin
谷蛋白Glutelin 总蛋白Total protein 清蛋白Albumin 球蛋白Globulin 醇溶蛋白Prolamin 谷蛋白Glutelin 谷/醇比Glu/Prol
浙恢7954
Zhehui7954
LN 0.87 b 0.83 b 0.53 b 6.71 c 8.87 c 0.197 b 0.188 c 0.120 b 1.524 c 12.66 b
MN 0.89 b 1.06 a 0.58 a 7.39 b 10.57 a 0.206 ab 0.246 a 0.137 a 1.714 b 12.53 b
HN 1.03 a 0.97 b 0.61 a 8.06 a 10.81 a 0.228 a 0.215 b 0.135 a 1.786 a 13.21 a
黄华占
Huanghuazhan
LN 0.86 b 0.92 b 0.66 b 7.47 b 9.43 b 0.187 c 0.200 b 0.144 b 1.626 b 11.57 b
MN 1.02 a 1.11 a 0.68 ab 8.08 a 11.06 a 0.226 a 0.245 a 0.151 a 1.790 a 11.93 a
HN 0.98 a 1.06 a 0.71 a 8.12 a 11.18 a 0.211 b 0.228 ab 0.153 a 1.747 a 11.66 b
秀水 134
Xiushui 134
LN 0.87 b 0.91 b 0.56 b 5.75 c 8.57 b 0.184 b 0.192 b 0.110 b 1.320 b 11.16 b
MN 0.91 b 1.07 a 0.63 a 6.91 b 10.24 a 0.189 b 0.222 a 0.131 a 1.538 a 11.76 a
HN 1.12 a 1.08 a 0.66 a 7.17 a 10.53 a 0.223 a 0.215 ab 0.132 a 1.530 a 11.62 a
秀水09
Xiushui 09
LN 0.92 b 0.93 c 0.51 c 6.32 c 9.09 c 0.204 b 0.206 b 0.113 b 1.384 c 12.21 b
MN 0.90 b 1.07 b 0.57 b 7.04 b 9.85 b 0.201 b 0.239 a 0.127 a 1.663 b 13.05 a
HN 1.06 a 1.14 a 0.64 a 7.76 a 10.98 a 0.223 a 0.240 a 0.130 a 1.716 a 13.16 a

Fig. 2

Differences in SDS-PAGE and relative optical density of storage protein among three N treatments LN, MN, and HN mean low nitrogen (0 kg hm-2), medium nitrogen (180 kg hm-2), and high nitrogen (300 kg hm-2) levels, respectively. A and B mean SDS-PAGE and relative optical density of storage protein, respectively. Bars indexed with the same small letters are not significantly different (P < 0.05) between different N levels for the same rice cultivar; Error bars represented SD values of three biological replicates."

Table 3

Differences of grain protein components and contents in rice under different temperature and different N levels"

氮水平
N level
温度处理
Temperature treatment
相对含量Relative content (%) 绝对含量Accumulation amount (mg grain-1)
清蛋白
Albumin
球蛋白
Globulin
醇溶蛋白
Prolamin
谷蛋白
Glutelin
总蛋白
Total protein
清蛋白
Albumin
球蛋白
Globulin
醇溶蛋白
Prolamin
谷蛋白
Glutelin
谷/醇比
Glu/prol
LN NT 0.81 b 0.84 b 0.53 a 6.45 b 8.52 c 0.19 a 0.19 a 0.12 a 1.49 a 12.17 c
HT1 0.87 b 0.95 a 0.51 a 7.03 a 9.29 b 0.19 a 0.21 a 0.11 a 1.52 a 13.48 b
HT2 1.09 a 1.03 b 0.46 b 6.98 a 9.41 a 0.20 a 0.20 a 0.09 b 1.38 b 15.17 a
平均 Mean 0.92 B 0.94 B 0.50 B 6.80 B 9.04 B 0.19 B 0.20 B 0.11 B 1.47 B 13.63 A
HN NT 0.93 b 1.02 b 0.61 a 7.15 b 9.77 b 0.21 a 0.23 ab 0.14 a 1.64 a 11.72 b
HT1 0.91 a 0.97 a 0.56 b 7.23 b 10.24 a 0.21 a 0.22 b 0.13 ab 1.66 a 13.15 a
HT2 1.07 a 1.18 a 0.58 ab 7.84 a 10.59 a 0.22 a 0.24 a 0.12 b 1.58 b 13.75 a
平均 Mean 0.97 A 1.06 A 0.58 A 7.41 A 10.20 A 0.21 A 0.23 A 0.13 A 1.63 A 12.84 B
氮肥效应 Nitrogen ** ** ** ** ** ** ** ** ** **
温度效应 Temperature ** ** ** ** ** ns * ** ** **
氮肥×温度
Nitrogen × temperature
** ** ** ** ** ns ns ns ** **

Fig. 3

Differences in SDS-PAGE and relative optical density of storage protein treated under different temperature regimes and different N levels LN and HN mean low nitrogen and high nitrogen levels, respectively; NT, HT1, and HT2 mean normal temperature regime (23℃), HT1 (30℃) and HT2 (34℃), respectively. A and B mean SDS-PAGE and relative optical density of storage protein, respectively. Bars indexed with the same small letters are not significantly different (P < 0.05) among different treatments; Error bars represent SD values of three biological replicates."

[1] Fitzgerald M A, McCouch S R, Hall R D. Not just a grain of rice: the quest for quality. Trend Plant Sci, 2009,14:133-139.
doi: 10.1016/j.tplants.2008.12.004
[2] 黄发松, 孙宗修, 胡培松, 唐绍清. 食用稻米品质形成研究的现状与展望. 中国水稻科学, 1998,12:172-176.
Huang F S, Sun Z X, Hu P S, Tang S Q. Present situations and prospects for the research on rice grain quality forming. Chin J Rice Sci, 1998,12:172-176 (in Chinese with English abstract).
[3] Liu J C, Zhao Q, Zhou L J, Cao Z Z, Shi C H, Cheng F M. Influence of environmental temperature during grain filling period on granule size distribution of rice starch and its relation to gelatinization properties. J Cereal Sci, 2017,76:42-55.
[4] Dong W, Chen J, Wang L, Tian Y, Zhang B, Lai Y, Meng Y, Qian C, Guo J. Impacts of nighttime post-anthesis warming on rice productivity and grain quality in East China. Crop J, 2014,2:63-69.
[5] Champagne E, Bett-Garber K, Thomson J, Fitzgerald M. Unraveling the impact of nitrogen nutrition on cooked rice flavor and texture. Cereal Chem, 2009,86:274-280.
[6] 胡群, 夏敏, 张洪程, 曹利强, 郭保卫, 魏海燕, 陈厚存, 韩宝富. 氮肥运筹对钵苗机插优质食味水稻产量及品质的影响. 作物学报, 2017,43:420-431.
Hu Q, Xia M, Zhang H C, Cao L Q, Guo B W, Wei H Y, Chen H C, Han B F. Effect of nitrogen application regime on yield and quality of mechanical pot-seedlings transplanting rice with good taste quality. Acta Agron Sin, 2017,43:420-431 (in Chinese with English abstract).
[7] 金正勋, 秋太权, 孙艳丽, 赵久明, 金学泳. 氮肥对稻米垩白及蒸煮食味品质特性的影响. 植物营养与肥料学报, 2001,7:31-35.
Jin Z X, Qiu T Q, Sun Y L, Zhao J M, Jin X Y. Effect of nitrogen fertilizer on chalkiness ratio and cooking and eating quality properties of rice grain. Plant Nutr Fert Sci, 2001,7:31-35 (in Chinese with English abstract).
[8] 陶进, 钱希旸, 剧成欣, 刘立军, 张耗, 顾骏飞, 王志琴, 杨建昌. 不同年代中籼水稻品种的米质及其对氮肥的响应. 作物学报, 2016,42:1352-1362.
Tao J, Qian X Y, Ju C X, Liu L J, Zhang H, Gu J F, Wang Z Q, Yang J C. Grain quality and its response to nitrogen fertilizer in mid-season indica rice varieties planted in different decades from 1950s to 2010s. Acta Agron Sin, 2016,42:1352-1362 (in Chinese with English abstract).
[9] 徐正进, 陈温福, 马殿荣, 吴晓冬, 郑煜焱, 王嘉宇. 辽宁水稻食味值及其与品质性状的关系. 作物学报, 2005,31:1092-1094.
Xu Z J, Chen W F, Ma D R, Wu X D, Zheng Y Y, Wang J Y. Relationship between eating quality and other quality characters of rice in Liaoning. Acta Agron Sin, 2005,31:1092-1094(in Chinese with English abstract).
[10] 胡雅杰, 朱大伟, 邢志鹏, 龚金龙, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 改进施氮运筹对水稻产量和氮素吸收利用的影响. 植物营养与肥料学报, 2015,21:12-22.
Hu Y J, Zhu D W, Xing Z P, Gong J L, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Modifying nitrogen fertilization ratio in increase the yield and nitrogen uptake of super japonica rice. Plant Nutr Fert Sci, 2015,21:12-22 (in Chinese with English).
[11] 张洪程, 吴桂成, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 吕修涛, 万靓军, 黄银忠. 水稻氮肥精确后移及其机制. 作物学报, 2011,37:1837-1851.
Zhang H C, Wu G C, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Lyu X T, Wan L J, Huang Y Z. Precise postponing nitrogen application and its mechanism in rice. Acta Agron Sin, 2011,37:1837-1851 (in Chinese with English abstract).
[12] 姚姝, 于新, 周丽慧, 陈涛, 赵庆勇, 朱镇, 张亚东, 赵春芳, 赵凌, 王才林. 氮肥用量和播期对优良食味粳稻直链淀粉含量的影响. 中国水稻科学, 2016,30:532-540.
Yao S, Yu X, Zhou L H, Chen T, Zhao Q Y, Zhu Z, Zhang Y D, Zhao C F, Zhao L, Wang C L. Amylose content in good eating quality rice under different nitrogen rates and sowing dates. Chin J Rice Sci, 2016,30:532-540 (in Chinese with English abstract).
[13] 刘巧泉, 周丽慧, 王红梅, 顾铭洪. 水稻种子贮藏蛋白合成的分子生物学研究进展. 分子植物育种, 2008,6:1-15.
Liu Q Q, Zhou L H, Wang H M, Gu M H. Advances on biosynthesis of rice seed storage proteins in molecular biology. Mol Plant Breed, 2008,6:1-15 (in Chinese with English abstract).
[14] 陈能, 罗玉坤, 谢黎虹, 朱智伟, 段彬伍, 章林平. 我国水稻品种的蛋白质含量及与米质的相关性研究. 作物学报, 2006,32:1193-1196.
Chen N, Luo Y K, Xie L F, Zhu Z W, Duan B W, Zhang L P. Protein content and its correlation with other quality parameters of rice in China. Acta Agron Sin, 2006,32:1193-1196 (in Chinese with English abstract).
[15] Krishman P, Ramakrishnan B, Reddy K R, Reddy V R. High temperature effects on rice growth, yield and grain quality. Adv Agron, 2011,111:87-195.
[16] Hamaker B R, Griffin V K. Changing in the viscoelastic properties of cooked rice through protein disruption. Cereal Chem, 1990,67:261-264.
[17] Chrastil J. Correlations between the physicochemical and functional properties of rice. J Agric Food Chem, 1992,40:1683-1686.
[18] Lin C J, Li C Y, Lin S K, Yang F H, Huang J J, Liu Y H, Lur H S. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). J Agric Food Chem, 2010,58:10545-10552.
doi: 10.1021/jf101575j pmid: 20839801
[19] Luthe D S. Storage protein accumulation in developing rice (Oryza sativa L.) seeds. Plant Sci Lett, 1983,32:147-158.
[20] Liu Z H, Cheng F M, Cheng W D, Zhang G P. Positional variations in phytic acid and protein content within a panicle of japonica rice. J Cereal Sci, 2005,41:279-303.
[21] Yamagata H, Tanaka K. The site of synthesis and accumulation of rice storage proteins. Plant Cell Physiol, 1986,27:135-145.
[22] Zakaria S, Matsuda T, Tajima S, Nitta Y. Effect of high temperature at ripening stage on the reserve accumulation in seed in some rice cultivars. Plant Prod Sci, 2002,5:160-168.
[23] Dou Z, Tang S, Chen W Z, Zhang H X, Li G H, Liu Z H, Ding C Q, Chen L, Wang S H, Zhang H C, Ding Y F. Effects of open-field warming during grain-filling stage on grain quality of two japonica rice cultivars in lower reaches of Yangtze River delta. J Cereal Sci, 2018,81:118-126.
[24] 梁成刚, 陈利平, 汪燕, 刘佳, 许光利, 李天. 高温对水稻灌浆期籽粒氮代谢关键酶活性及蛋白质含量的影响. 中国水稻科学, 2010,24:398-402.
Liang C G, Chen L P, Wang Y, Liu J, Xu G L, Li T. Effects of high temperature on key enzyme activities of nitrogen metabolism and protein. Chin J Rice Sci, 2010,24:398-402 (in Chinese with English abstract).
[25] 马启林, 李阳生, 田小海, 鄢圣之, 雷慰慈, 中田升. 高温胁迫对水稻贮藏蛋白质的组成和积累形态的影响. 中国农业科学, 2009,42:714-718.
Ma Q L, Li Y S, Tian X H, Yan S Z, Lei W C, Nakata N. Influence of high temperature stress on composition and accumulation configuration of storage protein in rice. Sci Agric Sin, 2009,42:714-718 (in Chinese with English abstract).
[26] 周广洽, 徐孟亮, 谭周, 李训贞. 温光对稻米蛋白质及氨基酸含量的影响. 生态学报, 1997,17:537-542.
Zhou G Q, Xu M L, Tan Z, Li X Z. Effects of ecological factors of protein and amino acids of rice. Acta Ecol Sin, 1997,17:537-542 (in Chinese with English abstract).
[27] Altenbach S B. New insights into the effects of high temperature, drought and post-anthesis fertilizer on wheat grain development. J Cereal Sci, 2012,56:39-50.
[28] 韦克苏, 程方民, 董海涛, 张其芳, 刘奎刚, 曹珍珍. 水稻胚乳贮藏物代谢相关基因对花后高温胁迫响应的微阵列检测, 中国农业科学, 2010,43:1-11.
Wei K S, Cheng F M, Dong H T, Zhang Q F, Liu K G, Cao Z Z. Microarray analysis of gene expression profile related to grain storage metabolism in rice endosperms as affected by high temperature at filling stage. Sci Agric Sin, 2010,43:1-11 (in Chinese with English abstract).
[29] Yamakawa H, Hirose T, Kuroda M, Yamaguchi T. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol, 2007,144:258-277.
pmid: 17384160
[30] Ashida K, Araki E, Maruyama-Funatsuki W. Temperature during grain ripening affects the ratio of type-II/type-I protein body and starch pasting properties of rice (Oryza sativa L.). J Cereal Sci, 2013,57:153-159.
[31] Xia N, Wang J M, Gong Q, Yang X Q, Yin S W, Qi J R. Characterization and in vitro digestibility of rice protein prepared by enzyme-assisted microfluidization: comparison to alkaline extraction. J Cereal Sci, 2012,56:482-489.
[32] Peng S B, Huang J L, Sheehy J E, Laza R C, Visperas R M, Zhong X H, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 2004,101:9971-9975.
pmid: 15226500
[33] Dou Z, Tang S, Li G, Liu Z H, Ding C Q, Chen L, Wang S H, Ding Y F. Application of nitrogen fertilizer at heading stage improves rice quality under elevated temperature during grain-filling stage. Crop Sci, 2017,57:2183-2192.
[34] 戴云云, 丁艳锋, 王强盛, 李刚华, 刘正辉, 王绍华. 不同施氮水平下稻米品质对日间增温响应的差异. 植物营养与肥料学报, 2009,15:276-282.
Dai Y Y, Ding Y F, Wang Q S, Li G H, Liu Z H, Wang S H. Effect of high day-time temperature on rice quality under different panicle nitrogen treatments. Plant Nutr Fert Sci, 2009,15:276-282(in Chinese with English abstract).
[35] Tang S, Zhang H, Liu W, Dou Z, Zhou Q Y, Chen W Z, Wang S H, Ding Y F. Nitrogen fertilizer at heading stage effectively compensates for the deterioration of rice quality by affecting the starch-related properties under elevated temperatures. Food Chem, 2019,277:455-462.
doi: 10.1016/j.foodchem.2018.10.137 pmid: 30502170
[36] 段骅, 傅亮, 剧成欣, 刘立军, 杨建昌. 氮素穗肥对高温胁迫下水稻结实和稻米品质的影响. 中国水稻科学, 2013,27:591-602.
Duan H, Fu L, Ju C X, Liu L J, Yang J C. Effects of application of nitrogen as panicle-promoting fertilizer on seed setting and grain quality of rice under high temperature stress. Chin J Rice Sci, 2013,27:591-602 (in Chinese with English abstract).
[37] 吴翠平, 贺明荣, 张宾, 张洪华, 刘永环. 氮肥基追比与灌浆中期高温胁迫对小麦产量和品质的影响. 西北植物学报, 2007,27:734-739.
Wu C P, He M R, Zhang B, Zhang H H, Liu Y H. Effects of nitrogen dressing ratios and heat stress during the middle period of grain filling on wheat grain yield and quality. Acta Bot Borea1i- Occident Sin, 2007,27:734-739 (in Chinese with English abstract).
[38] Ito S, Hara T, Kawanami Y, Watanabe T, Thiraporn K, Ohtake N, Sueyoshi K, Mitsui T, Fukuyama T, Takahashi Y, Sato T, Sato A, Ohyama T. Carbon and nitrogen transport during grin filling in rice under high-temperature conditions. J Agron Crop Sci, 2009,195:368-376.
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[4] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[5] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[6] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[7] LI Xin-Ge, GAO Yang, LIU Xiao-Jun, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, CAO Qiang. Effects of sowing dates, sowing rates, and nitrogen rates on growth and spectral indices in winter wheat [J]. Acta Agronomica Sinica, 2022, 48(4): 975-987.
[8] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[9] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[10] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[11] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[12] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[13] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[14] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[15] DONG Yan-Kun, HUANG Ding-Quan, GAO Zhen, CHEN Xu. Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules [J]. Acta Agronomica Sinica, 2022, 48(2): 353-366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!