Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (10): 1854-1862.doi: 10.3724/SP.J.1006.2021.04208
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
YANG Qin-Li1(), YANG Duo-Feng1, DING Lin-Yun1, ZHANG Ting2, ZHANG Jun2, MEI Huan2, HUANG Chu-Jun2, GAO Yang1, YE Li1, GAO Meng-Tao1, YAN Sun-Yi2, ZHANG Tian-Zhen1,2, HU Yan1,2,*()
[1] |
Zhang J, Guo W Z, Zhang T Z. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet, 2002, 105:1166-1174.
pmid: 12582895 |
[2] | 陈良兵, 李永起. 棉花纤维发育的分子研究进展. 分子植物育种, 2004, 2:105-110. |
Chen L B, Li Y Q. The research progress on cotton fiber development at molecular level. Mol Plant Breed, 2004, 2:105-110 (in Chinese with English abstract). | |
[3] | Silva C S, Puranik S, Round A, Brennich M, Jourdain A, Parcy F, Hugouvieux V, Zubieta C. Evolution of the plant reproduction master regulators LFY and the MADS transcription factors: the role of protein structure in the evolutionary development of the flower. Front Plant Sci, 2016, 6:1193. |
[4] |
Kotilainen M, Elomaa P, Uimari A, Albert V A, Yu D Y, Teeri T H. GRCD1, an AGL2-like MADS box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell, 2000, 12:1893-1902.
pmid: 11041884 |
[5] |
Theißen G. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol, 2001, 4:75-85.
doi: 10.1016/S1369-5266(00)00139-4 |
[6] | 张云, 刘青林. 植物花发育的分子机理研究进展. 植物学通报, 2003, 20:589-601. |
Zhang Y, Liu Q Y. Proceedings on molecular mechanism of plant flower development. Chin Bull Bot, 2003, 20:589-601 (in Chinese with English abstract). | |
[7] |
Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353:31-37.
doi: 10.1038/353031a0 |
[8] |
Kaufmann K, Melzer R, Theißen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 2005, 347:183-198.
pmid: 15777618 |
[9] | 王亚杰. 巴西橡胶树MADS-box基因家族的克隆、表达谱分析及功能验证. 海南大学硕士学位论文, 海南海口, 2017. |
Wang Y J. Molcular Cloning, Expression Profile and Functional Analysis of MADS-box Genes in Hevea brasiliensis. MS Thesis of Hainan University, Haikou, Hainan, China, 2017 (in Chinese with English abstract). | |
[10] |
Jiao Y, Wickett N J, Ayyampalayam S, Chanderbali A S, Landherr L, Ralph P E, Tomsho L P, Hu Y, Liang H, Soltis P S. Ancestral polyploidy in seed plants and angiosperms. Nature, 2011, 473:97-100.
doi: 10.1038/nature09916 |
[11] |
Ng M, Yanofsky M F. Function and evolution of the plant mads-box gene family. Nat Rev Genet, 2001, 2:186-195.
pmid: 11256070 |
[12] |
Elliott R C, Betzner A S, Huttner E, Oakes M P, Tucker W Q J, Gerentes D, Perez P, Smyth D R. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell, 1996, 8:155-168.
pmid: 8742707 |
[13] |
Klucher K M, Chow H, Reiser L, Fischer R L. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell, 1996, 8:137-153.
pmid: 8742706 |
[14] |
Schmid M, Uhlenhaut N H, Godard F, Demar M, Bressan R, Weigel D, Lohmann J U. Dissection of floral induction pathways using global expression analysis. Development, 2003, 130:6001-6012.
doi: 10.1242/dev.00842 |
[15] |
Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y S, Amasino R, Scheres B. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell, 2004, 119:109-120.
doi: 10.1016/j.cell.2004.09.018 |
[16] | Zhao Q, Wang T, Wei X D. Function of AP2 gene during floral organs development in higher plant: review. Chin J Trop Agric, 2005, 259:50-56. |
[17] |
Wang X Y, Fan S L, Song M Z, Pang C Y, Wei H L, Yu J W, Ma Q F, Yu S X, Fang D D. Upland cotton gene GhFPF1 confers promotion of flowering time and shade-avoidance responses in Arabidopsis thaliana. PLoS One, 2014, 9:e91869.
doi: 10.1371/journal.pone.0091869 |
[18] |
Zhang X H, Dou L L, Pang C Y, Song M Z, Yu S X. Genomic organization, differential expression, and functional analysis of the SPL gene family in Gossypium hirsutum. Mol Genet Genomics, 2015, 290:115-126.
doi: 10.1007/s00438-014-0901-x |
[19] |
Zhang X H, Wei J H, Fan S L, Song M Z, Pang C Y, Wei H L, Wang C S, Yu S Y. Functional characterization of GhSOC1 and GhMADS42 homologs from upland cotton(Gossypium hirsutum L.). Plant Sci, 2016, 242:178-186.
doi: 10.1016/j.plantsci.2015.05.001 |
[20] | 王力娜. 棉花MADS-box基因家族的克隆、表达谱分析及功能验证. 中国农业科学院硕士学位论文, 北京, 2010. |
Wang L N. Molecular Cloning, Expression Profile and Functional Analysis of MADS-Box Genes in Cotton. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2010 (in Chinese with English abstract). | |
[21] | 闻可心, 刘雪梅. AP2功能基因在植物花发育中的重要作用. 生物技术通报, 2010, (2):1-7. |
Wen K X, Liu X M. The important role of AP2 functional genes in plant floral developmen. Biotechnol Bull, 2010, (2):1-7 (in Chinese with English abstract). | |
[22] |
Irish V F. Floral development in Arabidopsis. Plant Physiol Biochem, 1998, 36:61-68.
doi: 10.1016/S0981-9428(98)80091-0 |
[23] |
Bomblies K, Dagenais N, Weigel D. Redundant enhancers mediate transcriptional repression of AGAMOUS by APETALA2. Dev Biol, 1999, 216:260-264.
pmid: 10588876 |
[24] |
Altschul S F, Madden T L, Schffer A A, Zhang J H, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25:3389-3402.
pmid: 9254694 |
[25] |
Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016, 11:1650.
doi: 10.1038/nprot.2016.095 |
[26] |
Lin D, Hong P, Zhang S H, Xu W Z, Jamal M, Yan K J, Lei Y Y, Li L, Ruan Y J, Fu Z F, Li G L, Cao G. Digestion-ligation-only Hi-C is an efficient and cost-effective method for chromosome conformation capture. Nat Genet, 2018, 50:754-763.
doi: 10.1038/s41588-018-0111-2 pmid: 29700467 |
[27] |
Huang C, Sun H Y, Xu D Y, Chen Q Y, Tian F. ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA, 2018, 115:E334-E341.
doi: 10.1073/pnas.1718058115 |
[1] | CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324. |
[2] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[3] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[4] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[5] | ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026. |
[6] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[7] | DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885. |
[8] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[9] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
[10] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[11] | ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409. |
[12] | ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510. |
[13] | XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120. |
[14] | ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39. |
[15] | WANG Wei-Xia, LAI Feng-Xiang, HU Hai-Yan, HE Jia-Chun, WEI Qi, WAN Pin-Jun, FU Qiang. Effect of 11-year storage of GMO reference material at ultra-low temperature on nucleic acid detection of standard matrix sample of transgenic crop [J]. Acta Agronomica Sinica, 2022, 48(1): 238-248. |
|