Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (10): 1854-1862.doi: 10.3724/SP.J.1006.2021.04208

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of a cotton flower organ mutant 182-9 and cloning of candidate genes

YANG Qin-Li1(), YANG Duo-Feng1, DING Lin-Yun1, ZHANG Ting2, ZHANG Jun2, MEI Huan2, HUANG Chu-Jun2, GAO Yang1, YE Li1, GAO Meng-Tao1, YAN Sun-Yi2, ZHANG Tian-Zhen1,2, HU Yan1,2,*()   

  1. 1State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    2College of Agricultural & Biotechnology, Zhejiang University, Hangzhou 310000, Zhejiang, China
  • Received:2020-09-10 Accepted:2021-01-13 Online:2021-10-12 Published:2021-03-11
  • Contact: HU Yan E-mail:739768392@qq.com;njauhuyan@njau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31970320);National Major Project for Developing New GM Crops(2016ZX08009-003)

Abstract:

Cotton is an important economic crop and the main source of natural fiber in the world. The budding, flowering and bolling during cotton growth and development directly affect the yield and quality of cotton fiber that are the main economic traits of cotton. In this study, we found a flower organ mutant (named 182-9) in transgenic cottons, which displayed the floral organ petaloid feature. PCR and Southern blotting confirmed that the foreign T-DNA was integrated into the 182-9 genome with a single copy. Comparative analysis of the resequencing data revealed that the exogenic T-DNA was inserted in the 182-9 on chromosome A11: 59086840. The insertion site was further verified by PCR and southern blot. According to the gene annotation of cotton genome, there were three candidate genes of GH_A11G2251, GH_A11G2252, and GH_ A11G2253, near to the insertion site. GH_ A11G2251 encoded AP2 genes controlling the formation of sepals and petals in the ABC model of flower organs as previous report. qRT-PCR showed that there were significant differences in the expression level of GH_A11G2251 in petals, pistil and stamens of transgenic receptor W0 and mutant 182-9. Our study provided the basis for further study of molecular mechanism in cotton floral organ development.

Key words: cotton, transgenic, floral organ, mutant, gene cloning

Fig. 1

T-DNA structure of the transgenic vector"

Fig. 2

Phenotype comparison of floral organ between the mutant 182-9 and transgenic receptor W0 A: the whole flower organ and ovary of transgenic receptor W0. B: floral organ of the mutant 182-9. C: bract, sepal, petal, pistil stamen of transgenic receptor W0. D: bracts, sepals, and petaloid structure of the mutant 182-9. Bar: 1 cm."

Fig. 3

PCR detection of NPTII gene in transgenic mutant 182-9 M: DNA molecular-weight markers; W0: negative control; 1: transgenic line 182-9; 2: transgenic line 182-36; 3: transgenic line 182-91; 4: transgenic line 182-150; 5: transgenic line 182-172; 6: transgenic line 182-173; 7: transgenic line 182-187."

Fig. 4

Southern blotting of NPTII gene in mutant 182-9 genome M: DNA marker; 1: transgenic receptor W0; C: plasmid; 2: transgenic line 182-187; 3: transgenic line 182-36; 4: transgenic line 182-173; 5: transgenic line 182-9 (indicated by the arrow)."

Table 1

Evaluation of the resequencing data"

样品
Sample
原始reads
Raw reads
过滤后reads
Clean reads
原始碱基数
Raw base (Gb)
过滤后碱基数Clean base (Gb) Q30
(%)
GC含量
GC content (%)
182-9 245,670,776 245,536,479 73.70 73.66 91.81 35.43
W0 236,081,132 235,926,310 70.82 70.78 89.16 35.51

Fig. 5

PCR detection of the T-DNA insertion site in mutant 182-9 A: diagram of PCR detection; B: the sequencing results of the amplified sequence from 182-9 (the red part is the cotton genome sequence, and the others are T-DNA sequences). M: DNA marker; W0: transgenic receptor; 182-9: transgenic line."

Fig. 6

Southern blot detection of T-DNA insertion site M: DNA marker; C: positive plasmid; 1: transgenic line 182-9; 2: transgenic receptor W0. The specific band of 182-9 is shown by an arrow."

Table 2

Function annotation of the three candidate genes"

基因ID
Gene ID
拟南芥中同源基因
Homologous genes in Arabidopsis
功能描述
Function annotation
GH_A11G2251 ANT AP2类乙烯反应转录因子
AP2-like ethylene-responsive transcription factor ANT
GH_A11G2252 At1g65750 假定核糖核酸酶H蛋白At1g65750
Putative ribonuclease H protein At1g65750
GH_A11G2253 NA NA

Fig. 7

Position of the candidate gene relative to the insertion site"

Fig. 8

Comparison of the amplified sequences of GH_A11G2251 in mutant 182-9 and W0"

Fig. 9

Comparison of the amplified sequences of GH_A11G2252 in mutant 182-9 and W0"

Fig. 10

Comparison of the amplified sequences of GH_A11G2253 in mutant 182-9 and W0"

Fig. 11

Relative expression levels of candidate genes in floral organs A: the schematic diagram of floral organs of W0 and 182-9; B: the expression levels of the candidate genes in mutant 182-9 and wild-type W0. * means significant difference at the 0.05 probability level."

[1] Zhang J, Guo W Z, Zhang T Z. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet, 2002, 105:1166-1174.
pmid: 12582895
[2] 陈良兵, 李永起. 棉花纤维发育的分子研究进展. 分子植物育种, 2004, 2:105-110.
Chen L B, Li Y Q. The research progress on cotton fiber development at molecular level. Mol Plant Breed, 2004, 2:105-110 (in Chinese with English abstract).
[3] Silva C S, Puranik S, Round A, Brennich M, Jourdain A, Parcy F, Hugouvieux V, Zubieta C. Evolution of the plant reproduction master regulators LFY and the MADS transcription factors: the role of protein structure in the evolutionary development of the flower. Front Plant Sci, 2016, 6:1193.
[4] Kotilainen M, Elomaa P, Uimari A, Albert V A, Yu D Y, Teeri T H. GRCD1, an AGL2-like MADS box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell, 2000, 12:1893-1902.
pmid: 11041884
[5] Theißen G. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol, 2001, 4:75-85.
doi: 10.1016/S1369-5266(00)00139-4
[6] 张云, 刘青林. 植物花发育的分子机理研究进展. 植物学通报, 2003, 20:589-601.
Zhang Y, Liu Q Y. Proceedings on molecular mechanism of plant flower development. Chin Bull Bot, 2003, 20:589-601 (in Chinese with English abstract).
[7] Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353:31-37.
doi: 10.1038/353031a0
[8] Kaufmann K, Melzer R, Theißen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 2005, 347:183-198.
pmid: 15777618
[9] 王亚杰. 巴西橡胶树MADS-box基因家族的克隆、表达谱分析及功能验证. 海南大学硕士学位论文, 海南海口, 2017.
Wang Y J. Molcular Cloning, Expression Profile and Functional Analysis of MADS-box Genes in Hevea brasiliensis. MS Thesis of Hainan University, Haikou, Hainan, China, 2017 (in Chinese with English abstract).
[10] Jiao Y, Wickett N J, Ayyampalayam S, Chanderbali A S, Landherr L, Ralph P E, Tomsho L P, Hu Y, Liang H, Soltis P S. Ancestral polyploidy in seed plants and angiosperms. Nature, 2011, 473:97-100.
doi: 10.1038/nature09916
[11] Ng M, Yanofsky M F. Function and evolution of the plant mads-box gene family. Nat Rev Genet, 2001, 2:186-195.
pmid: 11256070
[12] Elliott R C, Betzner A S, Huttner E, Oakes M P, Tucker W Q J, Gerentes D, Perez P, Smyth D R. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell, 1996, 8:155-168.
pmid: 8742707
[13] Klucher K M, Chow H, Reiser L, Fischer R L. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell, 1996, 8:137-153.
pmid: 8742706
[14] Schmid M, Uhlenhaut N H, Godard F, Demar M, Bressan R, Weigel D, Lohmann J U. Dissection of floral induction pathways using global expression analysis. Development, 2003, 130:6001-6012.
doi: 10.1242/dev.00842
[15] Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y S, Amasino R, Scheres B. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell, 2004, 119:109-120.
doi: 10.1016/j.cell.2004.09.018
[16] Zhao Q, Wang T, Wei X D. Function of AP2 gene during floral organs development in higher plant: review. Chin J Trop Agric, 2005, 259:50-56.
[17] Wang X Y, Fan S L, Song M Z, Pang C Y, Wei H L, Yu J W, Ma Q F, Yu S X, Fang D D. Upland cotton gene GhFPF1 confers promotion of flowering time and shade-avoidance responses in Arabidopsis thaliana. PLoS One, 2014, 9:e91869.
doi: 10.1371/journal.pone.0091869
[18] Zhang X H, Dou L L, Pang C Y, Song M Z, Yu S X. Genomic organization, differential expression, and functional analysis of the SPL gene family in Gossypium hirsutum. Mol Genet Genomics, 2015, 290:115-126.
doi: 10.1007/s00438-014-0901-x
[19] Zhang X H, Wei J H, Fan S L, Song M Z, Pang C Y, Wei H L, Wang C S, Yu S Y. Functional characterization of GhSOC1 and GhMADS42 homologs from upland cotton(Gossypium hirsutum L.). Plant Sci, 2016, 242:178-186.
doi: 10.1016/j.plantsci.2015.05.001
[20] 王力娜. 棉花MADS-box基因家族的克隆、表达谱分析及功能验证. 中国农业科学院硕士学位论文, 北京, 2010.
Wang L N. Molecular Cloning, Expression Profile and Functional Analysis of MADS-Box Genes in Cotton. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2010 (in Chinese with English abstract).
[21] 闻可心, 刘雪梅. AP2功能基因在植物花发育中的重要作用. 生物技术通报, 2010, (2):1-7.
Wen K X, Liu X M. The important role of AP2 functional genes in plant floral developmen. Biotechnol Bull, 2010, (2):1-7 (in Chinese with English abstract).
[22] Irish V F. Floral development in Arabidopsis. Plant Physiol Biochem, 1998, 36:61-68.
doi: 10.1016/S0981-9428(98)80091-0
[23] Bomblies K, Dagenais N, Weigel D. Redundant enhancers mediate transcriptional repression of AGAMOUS by APETALA2. Dev Biol, 1999, 216:260-264.
pmid: 10588876
[24] Altschul S F, Madden T L, Schffer A A, Zhang J H, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25:3389-3402.
pmid: 9254694
[25] Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016, 11:1650.
doi: 10.1038/nprot.2016.095
[26] Lin D, Hong P, Zhang S H, Xu W Z, Jamal M, Yan K J, Lei Y Y, Li L, Ruan Y J, Fu Z F, Li G L, Cao G. Digestion-ligation-only Hi-C is an efficient and cost-effective method for chromosome conformation capture. Nat Genet, 2018, 50:754-763.
doi: 10.1038/s41588-018-0111-2 pmid: 29700467
[27] Huang C, Sun H Y, Xu D Y, Chen Q Y, Tian F. ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA, 2018, 115:E334-E341.
doi: 10.1073/pnas.1718058115
[1] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[2] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[3] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[4] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[5] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[6] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[7] DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885.
[8] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[9] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[10] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[11] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[12] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[13] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[14] ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39.
[15] WANG Wei-Xia, LAI Feng-Xiang, HU Hai-Yan, HE Jia-Chun, WEI Qi, WAN Pin-Jun, FU Qiang. Effect of 11-year storage of GMO reference material at ultra-low temperature on nucleic acid detection of standard matrix sample of transgenic crop [J]. Acta Agronomica Sinica, 2022, 48(1): 238-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!