Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (11): 2258-2267.doi: 10.3724/SP.J.1006.2021.01081

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields

HU Xin-Hui1(), GU Shu-Bo1, ZHU Jun-Ke3, WANG Dong2,*()   

  1. 1Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
    2College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    3Zibo Hefeng Seed Technology Co., Ltd., Linzi 255000, Shandong, China
  • Received:2020-10-21 Accepted:2021-03-19 Online:2021-11-12 Published:2021-04-07
  • Contact: WANG Dong E-mail:huxinhui173@163.com;wangd@nwafu.edu.cn
  • Supported by:
    Key Innovation Project on Technology from Shandong Provincial Government(2019JZZY010716);Taishan Industry Leader Talent Project of Shandong

Abstract:

To investigate the effects of potassium applying on the grain yield formation of winter wheat, the experiments were carried out on different soil textures with high-yield winter wheat variety Taimai 198. To analyze the effects of potassium application at different stages on winter wheat flag leaf photosynthetic characteristics, dry matter accumulation and distribution, and grain yield under different soil texture conditions, two soil texture test fields [sandy loam (S) and silty loam (F)] and three treatments [no potassium fertilizer (K0), potassium fertilizer base application (100% applicating at sowing, K1), and split application (50% applicating at sowing stage + 50% topdressing at the jointing stage, K2)] was arranged. The results showed that the interaction of soil texture and potassium application significantly affected the grain number per spike and dry matter assimilated after anthesis and grain yield. Under the two soil texture conditions, potassium application significantly increased the grain yield of winter wheat, and K2 treatment had the highest yield. Compared with K1 treatment, the grains number per ear, the SPAD and net photosynthetic rate of flag leaves after anthesis, the accumulation of dry matter per stem after anthesis, and the transfer of assimilation to the grain after anthesis were increased under K2 treatment. Under sandy loam conditions, grain yield of K2 treatment was by 12.4% and 10.4% higher than that of K1 treatment, respectively. Under silt loam conditions, grain yield was by 5.2% and 5.4% higher than that of K1 treatment. Those results indicated that wheat yield was significantly increased by changing potassium fertilizer base application to 50% base application with 50% topdressing at jointing stage, and the wheat yield was higher in sandy loam field.

Key words: winter wheat, potassium application at different growth stages, soil fertility, dry matter, grain yield

Table 1

Percentage of soil particles in 0-200 cm soil layers of experimental plots"

土层
Soil layer (cm)
粉壤土地块 Powder loam plot (%) 沙壤土地块 Sandy loam plot (%)
黏粒 Clay 沙粒 Sand 粉粒 Powder 黏粒 Clay 沙粒 Sand 粉粒 Powder
0-20 19.3 21.0 59.7 9.8 50.6 39.6
20-40 20.4 20.7 58.9 8.5 54.7 36.8
40-60 21.7 19.0 59.3 8.1 61.1 30.8
60-80 15.1 21.3 63.6 8.6 57.2 34.2
80-100 12.2 22.4 65.4 7.4 71.4 21.2
100-120 17.5 19.7 62.8 6.5 79.6 13.9
120-140 17.6 20.3 62.1 6.3 73.3 20.4
140-160 15.2 17.6 67.2 5.7 69.5 24.8
160-180 10.4 21.5 68.1 6.3 75.4 18.3
180-200 13.7 22.3 64.0 5.7 70.4 23.9

Table 2

Soil nutrient content in 0-20 cm soil layer of experimental plots before sowing"

年度
Year
试验地
Experimental plot
有机质
Organic matter
(%)
全氮
Total nitrogen
(g kg‒1)
碱解氮
Hydrolysable nitrogen
(mg kg‒1)
速效磷
Available phosphorus
(mg kg‒1)
速效钾
Available potassium
(mg kg‒1)
2018-2019 粉壤土Powder loam 1.02 1.91 84.14 30.38 118.91
沙壤土Sandy loam 0.94 1.79 78.82 22.85 97.06
2019-2020 粉壤土Powder loam 1.12 1.96 86.33 30.74 116.48
沙壤土Sandy loam 0.89 1.66 77.65 23.79 94.03

Fig. 1

Changes of dry matter accumulation in single stem of winter wheat S: sandy loam plot; F: powder loam plot; K0: no potassium fertilizer; K1: all potash fertilizer was applied as base manure; K2: 50% potash fertilizer was applied as base manure and additional potash fertilizer was applied at jointing stage; W: wintering stage; T: turning green stage; J: jointing stage; A: anthesis stage; M: maturity stage. The error bar is standard deviation. Different lowercase letters above the columns indicate significant difference at P < 0.05 among treatments at the same growth stage."

Fig. 2

Relative content of chlorophyll in flag leaf of winter wheat after anthesis S: sandy loam plot; F: powder loam plot; K0: no potassium fertilizer; K1: all potash fertilizer was applied as base manure; K2: 50% potash fertilizer was applied as base manure and additional potash fertilizer was applied at jointing. The error bar is standard deviation. Different lowercase letters above columns indicate significant difference at P < 0.05 among treatments at the same growth stage."

Fig. 3

Net photosynthetic rate of flag leaf after anthesis in winter wheat S: sandy loam plot; F: powder loam plot; K0: no potassium fertilizer; K1: all potash fertilizer was applied as base manure; K2: 50% potash fertilizer was applied as base manure and additional potash fertilizer was applied at jointing. The error bar is standard deviation. Different lowercase letters indicate significant difference at P < 0.05 among treatments at the same growth stage."

Fig. 4

Effects of different treatments on grain filling rate S: sandy loam plot; F: powder loam plot; K0: no potassium fertilizer; K1: all potash fertilizer was applied as base manure; K2: 50% potash fertilizer was applied as base manure and additional potash fertilizer was applied at jointing stage."

Table 3

Dry matter assimilation and dry matter redistribution of vegetative organs after anthesis under different treatments"

年份
Year
处理
Treatment
开花前营养器官贮存干物质
Dry matter in vegetable organs at anthesis
花后同化干物质
Dry matter assimilated after anthesis
向籽粒转运量
Translocation amount
(kg hm‒2)
对籽粒贡献率
Contribution to grain
(%)
输入籽粒量
Allocation to grain
(kg hm‒2)
对籽粒贡献率
Contribution to grain
(%)
2018-2019 SK0 1573.5 d 20.0 b 6277.9 d 80.0 ab
SK1 2007.4 b 22.8 a 6798.9 c 77.2 b
SK2 1710.9 c 17.2 c 8260.7 a 82.8 a
FK0 1694.1 c 19.2 b 7143.2 c 80.8 a
FK1 2216.7 a 22.7 a 7592.4 b 77.3 b
FK2 1758.4 c 17.1 c 8534.1 a 82.9 a
年份
Year
处理
Treatment
开花前营养器官贮存干物质
Dry matter in vegetable organs at anthesis
花后同化干物质
Dry matter assimilated after anthesis
向籽粒转运量
Translocation amount
(kg hm‒2)
对籽粒贡献率
Contribution to grain
(%)
输入籽粒量
Allocation to grain
(kg hm‒2)
对籽粒贡献率
Contribution to grain
(%)
2019-2020 SK0 2867.5 d 34.2 bc 5521.9 d 65.8 bc
SK1 3312.3 b 35.6 ab 5991.0 c 64.4 c
SK2 3095.3 c 30.0 d 7237.9 a 70.0 a
FK0 3224.8 bc 36.5 a 5587.3 d 63.5 c
FK1 3557.7 a 36.9 a 6082.8 c 63.1 c
FK2 3372.5 b 32.7 c 6936 b 67.3 ab
土壤质地 Soil-texture (S) ** * * NS
施钾方式 Potassium application methods (P) ** ** ** **
土壤质地×施钾方式 S× P NS NS * NS

Table 4

Effects of different treatments on grain yield and yield components in winter wheat"

年份
Year
处理
Treatment
穗数
Spike number
(×104 hm-2)
穗粒数
Grain number
per spike
千粒重
1000-grain weight
(g)
产量
Yield
(kg hm-2)
2018-2019 SK0 642.0 b 32.5 e 40.5 b 6755.1 e
SK1 663.0 ab 34.6 d 42.2 ab 7538.4 d
SK2 665.0 ab 38.3 bc 43.2 a 8476.6 c
FK0 675.0 ab 36.9 c 42.7 ab 8334.3 c
FK1 684.0 a 39.0 b 43.1 a 8870.6 b
FK2 678.0 ab 41.4 a 43.2 a 9335.3 a
2019-2020 SK0 696.0 b 30.4 d 40.1 b 7541.8 e
SK1 721.0 ab 32.0 c 42.0 a 8116.6 d
SK2 731.0 ab 35.8 a 42.3 a 8962.5 b
FK0 738.0 ab 32.1 c 41.8 ab 8491.7 c
FK1 759.0 a 34.4 b 41.9 ab 9057.2 b
FK2 751.0 a 36.6 a 42.4 a 9547.6 a
土壤质地 Soil-texture (S) * ** NS **
施钾方式 Potassium application methods (P) NS ** NS **
土壤质地×施钾方式 S× P NS * NS *
[1] 孙洪仁, 张吉萍, 冮丽华, 吕玉才, 王应海. 中国小麦土壤速效钾丰缺指标与适宜施钾量研究. 土壤, 2019, 51: 895‒902.
Sun H R, Zhang J P, Gang L H, Lyu Y C, Wang Y H. Study on abundance-deficiency indices of soil available potassium and appropriate potassium application rates for wheat in China. Soils, 2019, 51: 895-902 (in Chinese with English abstract).
[2] 常国权, 李东星. 中国钾盐资源的开发利用现状综述. 石河子科技, 2012, 37(3):19-21.
Chang G Q, Li D X. Summarization of the development and utilization status of potash resources in China. Shihezi Sci Technol, 2012, 37(3):19-21 (in Chinese with English abstract).
[3] 党红凯, 李瑞奇, 李雁鸣, 孙亚辉, 张馨文, 孟建. 超高产冬小麦对钾的吸收、积累和分配. 植物营养与肥料学报, 2013, 19: 274-287.
Dang H K, Li R Q, Li Y M, Sun Y H, Zhang X W, Meng J. Absorption, accumulation and distribution of potassium in super highly-yielding winter wheat. J Plant Nutr Fert, 2013, 19: 274-287 (in Chinese with English abstract).
[4] 丁锦峰, 訾妍, 杨佳凤, 潘婷, 封超年, 朱新开, 李春燕, 彭永欣, 郭文善. 稻茬小麦公顷产量9000 kg群体钾素积累、分配与利用特性. 作物学报, 2014, 40: 1035-1043.
Ding J F, Zi Y, Yang J F, Pan T, Feng C N, Zhu X K, Li C Y, Peng Y X, Guo W S. Potassium accumulation, distribution, and utilization in wheat with yield potential of 9000 kg ha-1 in rice-wheat Rotation System. Acta Agron Sin, 2014, 40: 1035-1043 (in Chinese with English).
[5] Zhan A, Zou C Q, Ye Y L, Liu Z H, Cui Z L, Chen X P. Estimating on-farm wheat yield response to potassium and potassium uptake requirement in China. Field Crops Res, 2016, 191: 13-19.
doi: 10.1016/j.fcr.2016.04.001
[6] Sitthaphanit S, Limpinuntana V, Toomsan B, Panchaban S, Bell R W. Fertiliser strategies for improved nutrient use efficiency on sandy soils in high rainfall regimes. Nutr Cycl Agroecosyst, 2009, 85: 123-139.
doi: 10.1007/s10705-009-9253-z
[7] 梁晓芳, 于振文. 施钾时期对冬小麦旗叶光合特性和籽粒淀粉积累的影响. 应用生态学报, 2004, 15: 1349-1352.
Liang X F, Yu Z W. Effect of potassium application stage on photosynthetic characteristics of winter wheat flag leaves and on starch accumulation in wheat grains. Chin J Appl Ecol, 2004: 1349-1352 (in Chinese with English abstract).
[8] 于振文, 梁晓芳, 李延奇, 王雪. 施钾量和施钾时期对小麦氮素和钾素吸收利用的影响. 应用生态学报, 2007, 18: 69-74.
Yu Z W, Liang X F, Li Y Q, Wang X. Effects of potassium application rate and time on the uptake and utilization of nitrogen and potassium by winter wheat. Chin J Appl Ecol, 2007: 69-74 (in Chinese with English abstract).
[9] Lu Q, Jia D Y, Zhang Y, Dai X L, He M R. Split application of potassium improves yield and end-use quality of winter wheat. Agron J, 2014, 106: 1411-1419.
doi: 10.2134/agronj13.0202
[10] 张玲娥, 双文元, 云安萍, 牛灵安, 胡克林. 30年间河北省曲周县土壤速效钾的时空变异特征及其影响因素. 中国农业科学, 2014, 47: 923-933.
Zhang L E, Shuang W Y, Yun A P, Niu L A, Hu K L. Spatio-temporal variability and the influencing factors of soil available potassium in 30 years in Quzhou county, Hebei province. Sci Agric Sin, 2014, 47: 923-933 (in Chinese with English abstract).
[11] 赵晴月, 许世杰, 张务帅, 张哲, 姚智, 陈新平, 邹春琴. 中国玉米主产区土壤养分的空间变异及影响因素分析. 中国农业科学, 2020, 53: 3120-3133.
Zhao Q Y, Xu S J, Zhang W S, Zhang Z, Yao Z, Chen X P, Zou C Q. Spatial regional variability and influential factors of soil fertilities in the major regions of maize production of China. Sci Agric Sin, 2020, 53: 3120-3133 (in Chinese with English abstract).
[12] 李潮海, 王群, 梅沛沛, 刘松涛, 张永恩, 郝四平. 不同质地土壤上玉米养分吸收和分配特征. 植物营养与肥料学报, 2007, 13: 561-568.
Li C H, Wang Q, Mei P P, Liu S T, Zhang Y E, Hao S P. Characteristics of nutrient absorption and distribution of maize under different soil textures. J Plant Nutr Fert, 2007, 13: 561-568 (in Chinese with English abstract).
[13] 王东, 苑进. 小麦玉米周年生产变量肥水一体化灌溉系统. 中国专利: 201410499375.7, 2014-09-25.
Wang D, Yuan J. Annual production of wheat and maize fertilizer water integrated irrigation system. Chinese Patent, 201410499375.7, 2014-09-25 (in Chinese).
[14] 王东, 刘立钧, 张刚, 王宇辉, 王小溢, 朱俊科. 一种固态肥连续溶注一体机及其控制方法. 中国专利: 201911251373.5, 2020-02-14.
Wang D, Liu L J, Zhang G, Wang Y H, Wang X Y, Zhu J K. Solid fertilizer continuous dissolution and injection integrated machine and its control method. Chinese Patent, 201911251373.5, 2020-02-14 (in Chinese).
[15] 王依惠, 张叶子, 王亚菲, 石岩. 凹凸棒石保水剂对小麦旗叶光合特性及衰老的影响. 中国土壤与肥料, 2020, 57: 202-207.
Wang Y H, Zhang Y Z, Wang Y F, Shi Y. Effects of attapulgite water retaining agent on photosynthesis and senescence of flag leaves in wheat. Soils Fert Sci China, 2020, 57: 202-207 (in Chinese with English abstract)
[16] 蔡瑞国, 张敏, 尹燕枰, 王平, 张体彬, 顾锋, 戴忠民, 梁太波, 邬云海, 王振林. 小麦灌浆过程中旗叶光合及抗氧化代谢与氮素营养关系研究. 中国农业科学, 2008, 41: 53-62.
Cai R G, Zhang M, Yin Y P, Wang P, Zhang T B, Gu F, Dai Z M, Liang T B, Wu Y H, Wang Z L. Photosynthetic characteristics and antioxidative metabolism of flag leaves in responses to nitrogen application in wheat during grain filling. Sci Agric Sin, 2008, 41: 53-62 (in Chinese with English abstract).
[17] 熊淑萍, 张娟娟, 杨阳, 刘娟, 王晓航, 吴延鹏, 马新明. 不同冬小麦品种在3种质地土壤中氮代谢特征及利用效率分析. 植物生态学报, 2013, 37: 601-610.
doi: 10.3724/SP.J.1258.2013.00062
Xiong S P, Zhang J J, Yang Y, Liu J, Wang X H, Wu Y P, Ma X M. Research on nitrogen metabolism characteristics and use efficiency in different winter wheat cultivars grown on three soil textures. Chin J Plant Ecol, 2013, 37: 601-610 (in Chinese with English abstract).
[18] 杨阳, 熊淑萍, 刘娟, 李燕强, 王晓航, 吴延鹏, 马新明. 土壤质地对强筋型小麦郑麦366氮代谢及氮利用效率的影响. 麦类作物学报, 2013, 33: 466-471.
Yang Y, Xiong S P, Liu J, Li Y Q, Wang X H, Wu Y P, Ma X M. Effects of soil texture on nitrogen metabolism and nitrogen efficiency of strong-gluten wheat cultivar Zhengmai 336. J Triticeae Crops, 2013, 33: 466-471 (in Chinese with English abstract).
[19] Loneragan J F. Mineral nutrition of higher plants, second edition. Field Crops Res, 1996, 46: 184-185.
doi: 10.1016/0378-4290(96)84669-7
[20] 邹铁祥, 戴廷波, 姜东, 荆奇, 曹卫星. 氮、钾水平对小麦花后旗叶光合特性的影响. 作物学报, 2007, 33: 1667-1673.
Zou T X, Dai Y P, Jiang D, Jing Q, Cao W X. Effects of nitrogen and potassium application levels on flag leaf photosynthetic characteristics after anthesis in winter wheat. Acta Agron Sin, 2007, 33: 1667-1673 (in Chinese with English).
[21] Wang Y, Zhang Z K, Liang Y Y, Han Y L, Han Y L, Tan J F. High potassium application rate increased grain yield of shading-stressed winter wheat by improving photosynthesis and photosynthate translocation. Front Plant Sci, 2020, 11: 134.
doi: 10.3389/fpls.2020.00134 pmid: 32184793
[22] Pettigrew W T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant, 2008, 133: 670-681.
doi: 10.1111/j.1399-3054.2008.01073.x pmid: 18331406
[23] 韦还和, 孟天瑶, 李超, 史天宇, 马荣荣, 王晓燕, 杨筠文, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 钾肥用量对甬优籼粳杂交稻物质积累及其产量的影响, 作物学报, 2016, 42: 1201-1214.
Wei H H, Meng T Y, Li C, Shi T Y, Ma R R, Wang X Y, Yang J W, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Effects of potassium fertilizer rate on biomass accumulation and grain yield of Yongyou japonica/indica hybrids series. Acta Agron Sin, 2016, 42: 1201-1214 (in Chinese with English).
[24] 王丽金, 赵雪飞, 李瑞奇, 李雁鸣. 水分和钾肥对冬小麦群体物质生产和产量形成的影响. 河北农业大学学报, 2009, 32(4):1-7.
Wang L J, Zhao X F, Li R Q, Li Y M. Effect of irrigation frequency and potassium fertilization rate on population dry matter production and grain yield formation of winter wheat. J Hebei Agric Univ, 2009, 32(4):1-7 (in Chinese with English abstract).
[25] Roshani G A, Narayanasamy G. Effects of potassium on temporal growth of root and shoot of wheat and its uptake in different soils. Int J Plant Prod, 2010, 4: 25-32.
[26] 王喜枝, 王立河, 曹雯梅, 王应君, 孙斌, 刘松涛, 王立秋. 豫东潮土氮钾营养对强筋小麦干物质积累和产量的影响. 中国土壤与肥料, 2009, 46: 64-67.
Wang X Z, Wang L H, Cao W M, Wang Y J, Sun B, Liu S T, Wang L Q. Effects of nitrogen and potassium application on dry matter accumulation and gain yield of strong gluten wheat in loamy fluvo-agric soil. Soils Fert Sci China, 2009, 46: 64-67 (in Chinese with English abstract).
[27] 张运红, 杜君, 杨占平, 和爱玲, 姚健, 黄绍敏, 杜保池, 骆晓声. 不同品种优质小麦施钾效果差异研究. 天津农业科学, 2019, 25(9):29-33.
Zhang Y H, Du J, Yang Z P, He A L, Yao J, Huang S M, Du B C, Luo X S. Difference of the application effect of potassium in different high-quality wheat varieties. Tianjin Agric Sci, 2019, 25(9):29-33 (in Chinese with English abstract).
[28] Singh K N, Sharma D P. Response of wheat to nitrogen and potassium in saline soils. Exp Agric, 2001, 37: 417-427.
doi: 10.1017/S0014479701003118
[29] Huang S W, Jin J Y, Tan D S. Crop response to long-term potassium application as affected by potassium-supplying power of the selected soils in Northern China. Commun Soil Sci Plant Anal, 2009, 40: 2833-2854.
doi: 10.1080/00103620903173848
[30] 王宜伦, 杨素芬, 韩燕来, 李青松, 谭金芳. 钾肥运筹对砂质潮土冬小麦产量、品质及土壤钾素平衡的影响. 麦类作物学报, 2008, 28: 861-866.
Wang Y L, Yang S F, Han Y L, Li Q S, Tan J F. Effect of potassium fertilizer application on the yield, quality of winter wheat and soil available K balance in sandy Chao soil. J Triticeae Crops, 2008, 28: 861-866 (in Chinese with English abstract).
[31] 武际, 郭熙盛, 王允青, 黄晓荣. 钾肥运筹对小麦氮素和钾素吸收利用及产量和品质的影响. 土壤, 2008, 40: 777-783.
Wu J, Guo X S, Wang Y Q, Huang X R. Effects of potassium fertilizer operation on the uptake and utilization of nitrogen and potassium, yield and quality of wheat. Soils, 2008, 40: 777-783 (in Chinese with English abstract).
[32] 赵惠萍, 苗玉红, 王宜伦, 韩燕来, 谭金芳. 施钾时期对豫北沙薄地冬小麦旗叶叶绿素荧光特性及产量的影响. 河南农业大学学报, 2010, 44: 262-266.
Zhao H P, Miao Y H, Wang Y L, Han Y L, Tan J F. Effects of potassium fertilizer application time on chlorophyll fluorescence parameters of the flag leaf and on yield of winter wheat in northern Henan sandy soil. J Henan Agric Univ, 2010, 44: 262-266 (in Chinese with English abstract).
[33] Lyu X K, Li T, Wen X X, Liao Y, Liu Y C, Liu Y. Effect of potassium foliage application post-anthesis on grain filling of wheat under drought stress. Field Crops Res, 2017, 206: 95-105.
doi: 10.1016/j.fcr.2017.02.015
[1] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[4] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[5] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[6] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[7] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[8] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[9] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[10] KE Jian, CHEN Ting-Ting, XU Hao-Cong, ZHU Tie-Zhong, WU Han, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted [J]. Acta Agronomica Sinica, 2021, 47(7): 1372-1382.
[11] LIU Qiu-Yuan, ZHOU Lei, TIAN Jin-Yu, CHENG Shuang, TAO Yu, XING Zhi-Peng, LIU Guo-Dong, WEI Hai-Yan, ZHANG Hong-Cheng. Relationships among grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(5): 904-914.
[12] WU Ya-Wei, PU Wei, ZHAO Bo, WEI Gui, KONG Fan-Lei, YUAN Ji-Chao. Characteristics of post-anthesis carbon and nitrogen accumulation and translocation in maize cultivars with different low nitrogen tolerance [J]. Acta Agronomica Sinica, 2021, 47(5): 915-928.
[13] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[14] ZHU Ya-Li, WANG Chen-Guang, YANG Mei, ZHENG Xue-Hui, ZHAO Cheng-Feng, ZHANG Ren-He. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density [J]. Acta Agronomica Sinica, 2021, 47(3): 507-519.
[15] QIN Wen-Jie, GUO Run-Ze, ZOU Xiao-Xia, ZHANG Xiao-Jun, YU Xiao-Na, WANG Yue-Fu, SI Tong. Effects of drip irrigation and topdressing on dry matter weight, mineral nutrient absorption and yield of pod-bearing stage in peanut [J]. Acta Agronomica Sinica, 2021, 47(3): 520-529.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!