Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (3): 726-738.doi: 10.3724/SP.J.1006.2022.13016


Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China

SONG Shi-Qin1,2(), YANG Qing-Long1,2, WANG Dan1,2, LYU Yan-Jie2, XU Wen-Hua2, WEI Wen-Wen2, LIU Xiao-Dan2, YAO Fan-Yun2, CAO Yu-Jun2, WANG Yong-Jun1,2,*(), WANG Li-Chun1,2   

  1. 1Agronomy College, Jilin Agricultural University, Changchun 130118, Jilin, China
    2Institute of Agricultural Resources and Environment, Jilin Academy of Agriculture Sciences/State Engineering Laboratory of Maize, Changchun 130033, Jilin, China
  • Received:2021-02-25 Accepted:2021-04-26 Online:2021-06-03 Published:2021-06-03
  • Contact: WANG Yong-Jun E-mail:1436199591@qq.com;yjwang2004@126.com
  • Supported by:
    Agricultural Science and Technology Innovation Program of Jilin Province(CXGC2017JQ006);National Key Research and Development Program of China(2017YFD0300303);National Natural Science Foundation of China (31701349).(31701349)


Seed germination is the initial stage of crop morphology, which is determined by its own properties and environmental factors. Low temperature is one of the most important factors affecting seed germination. It is crucial to explore the relationship between seed properties and germination under low temperature environmental conditions for maize production in Northeast China. In the present study, 36 maize hybrids released in Northeast China were selected and the germination culture experiment was conducted under 6℃ (low temperature stress) and 15℃ (the control). The seedling vigor, seed germination rate, seed morphology and storage substances content were determined. The germination potential and germination rate of 36 maize hybrids were evaluated by the principal component analysis (PCA), the comprehensive evaluation value of cold tolerance (CL-value), and the membership function value (R-value). The relationship between the seed morphology (kernel length, kernel width, kernel thickness, kernel length/kernel width ratio, 100-kernel volume, and 100-kernel weight) and the seed storage substances (starch, protein, and fat) of 36 maize varieties were investigated. The results showed that the seedling vigor and germination rate of 36 maize hybrids were inhibited to some content, and the variation of relative seedling vigor cold injury rate and relative germination cold injury rate was the largest under low temperature stress. There was a significant correlation among the seven individual indicators that characterized cold tolerance. Principal component analysis could transform seven individual indicators into two independent comprehensive indicators. Among them, relative seedling vigor and relative germination rate had the largest positive contribution rate, which could be used as the key indicators for cold resistance evaluation at germination stage in maize. We classified 36 hybrids into four types of strong cold tolerance (19.4%), cold tolerance (30.6%), medium cold tolerance (33.3%), and cold sensitive (16.7%) by cluster analysis. Among them, Jidan 56, Kenji 267, Suiyu 23, Jidan 953, Kenji 268, Jidan 96, and Jidan 95 were strong cold-tolerant hybrids. The correlation analysis revealed that there was no significant correlation between seed morphology and cold tolerance. Starch content was significantly correlated with relative seedling vigor, relative germination rate, relative seedling vigor chilling injury rate, relative germination chilling injury rate, and relative germination time (r = 0.396**, r = 0.404 **, r = -0.401 **, r = -0.391 **, and r = 0.362 **). There was a significant negative correlation between protein content and relative seedling vigor (r = -0.379**). Regression analysis indicated that the types with high starch content had higher relative seedling vigor, relative germination rate, relative germination time, and lower relative seedling vigor, relative germination rate, and chilling injury rate. The regression model demonstrated that the seed starch content was 72.0%-74.0%, the relative seedling vigor was ≥70.0%, the relative germination rate was ≥80.5%, and the chilling injury rate of relative seedling vigor and relative germination rate was ≤50.0% under 6℃ stress. Under low temperature stress, the higher seed starch content was helpful to improve seed germination and reduce chilling injury. The varieties with starch content of 72.0%-74.0% were recommended to meet the requirements of seed germination in Northeast China.

Key words: maize, germination, low temperature stress, seed morphology, storage substance, Northeast China

Table 1

Maize hybrids and their breeding institutes tested in this study"

Hybrid name
Breeding institutes
1 丹玉311 Danyu 311 丹东农业科学院DAAS
2 丹玉336 Danyu 336 丹玉种业科技股份有限公司DST
3 沈玉21 Shenyu 21 沈阳市农业科学院SAAS
4 先玉335 Xianyu 335 铁岭先锋种子研究有限公司TPSR
5 辽单575 Liaodan 575 辽宁省农业科学院LAAS
6 辽单586 Liaodan 586 辽宁省农业科学院LAAS
7 辽单1258 Liaodan 1258 辽宁省农业科学院LAAS
8 辽单1281 Liaodan 1281 辽宁省农业科学院LAAS
9 辽单352 Liaodan 352 辽宁省农业科学院LAAS
10 吉单27 Jidan 27 吉农高新北方农作物优良品种开发中心JHTNCC
11 吉单953 Jidan 953 吉林省农业科学院JAAS
12 吉单50 Jidan 50 吉林省农业科学院JAAS
13 吉单95 Jidan 95 吉林省农业科学院JAAS
14 吉单96 Jidan 96 吉林省农业科学院JAAS
15 吉单56 Jidan 56 吉林省农业科学院JAAS
16 吉单558 Jidan 558 吉林省农业科学院JAAS
17 吉单441 Jidan 441 吉林省农业科学院JAAS
18 原单68 Yuandan 68 吉林省省原种业有限公司JSSI
19 吉东60 Jidong 60 吉东种业有限责任公司JSI
20 吉东66 Jidong 66 吉东种业有限责任公司JSI
21 垦吉267 Kenji 267 吉东种业有限责任公司JSI
22 垦吉268 Kenji 268 吉东种业有限责任公司JSI
23 垦吉269 Kenji 269 吉东种业有限责任公司JSI
24 鑫鑫1号 Xinxin 1 黑龙江省鑫鑫种子有限公司HXS
25 绥玉23 Suiyu 23 黑龙江省农业科学院绥化分院SHAAS
26 绥玉29 Suiyu 29 黑龙江省农业科学院绥化分院SHAAS
Hybrid name
Breeding institutes
27 绥玉35 Suiyu 35 黑龙江省农业科学院绥化分院SHAAS
28 绥玉42 Suiyu 42 黑龙江省农业科学院绥化分院SHAAS
29 克玉19 Keyu 19 黑龙江省农业科学院克山分院KHAAS
30 龙单42 Longdan 42 黑龙江省农业科学院HAAS
31 龙单67 Longdan 67 黑龙江省农业科学院HAAS
32 龙育7号 Longyu 7 黑龙江省农业科学院HAAS
33 嫩单22 Nendan 22 黑龙江省农业科学院齐齐哈尔分院QHAAS
34 垦单15 Kendan 15 黑龙江省农垦科学院HAALRS
35 庆单3号 Qingdan 3 大庆市庆发种业有限责任公司DQS
36 郑单958 Zhengdan 958 河南省农业科学院HNAAS

Table 2

Identification for cold tolerance of maize seed at germination stage"

Max. (%)
Min. (%)
Mean (%)
CV (%)
发芽势SV 适温Ambient temperature 100.0 23.0 76.0 24.0
低温Low temperature 93.0 0 43.0 70.0
发芽率GR 适温Ambient temperature 100.0 62.0 89.0 10.0
低温Low temperature 98.0 1.0 60.0 44.0
相对发芽势RSV 99.0 0 54.0 60.0
相对发芽率RGR 100.0 2.0 67.0 41.0
相对发芽势冷害率RSCR 100.0 1.0 46.0 72.0
相对发芽冷害率RGCR 99.0 0 34.0 79.0
相对发芽时间RGT 77.0 1.0 52.0 41.0

Table 3

Correlation analysis among different estimation indices at seed germination stage under low temperature stress"

指标Index X1 X2 X3 X4 X5 X6 X7
X1 1
X2 0.696** 1
X3 0.911** 0.548** 1
X4 0.712** 0.958** 0.607** 1
X5 -0.945** -0.666** -0.956** -0.718** 1
X6 -0.705** -0.962** -0.585** -0.994** 0.715** 1
X7 0.673** 0.965** 0.522** 0.970** -0.644** -0.976** 1

Table 4

Principal component analysis of different estimation indices at seed germination stage under low temperature stress"

主成分Principal component I II
特征值Eigen value 5.697 1.115
贡献率Variance contribution ratio 81.388 15.924
累积贡献率Accumulated variance contribution ratio 81.388 97.313
向量特征值Eigen vector X1 0.155 -0.369
向量特征值Eigen vector X2 0.162 0.296
向量特征值Eigen vector X3 0.141 -0.513
向量特征值Eigen vector X4 0.167 0.254
向量特征值Eigen vector X5 -0.156 0.393
向量特征值Eigen vector X6 -0.166 -0.270
向量特征值Eigen vector X7 0.160 0.343

Table 5

Comprehensive index (CL), index weight R(i), and D-value of each variety"

品种 Cultivar CL1 CL2 R1 R2 DD-value
吉单56 Jidan 56 0.708 -0.078 1.000 0.463 0.912
垦吉267 Kenji 267 0.690 0.002 0.983 0.508 0.905
绥玉23 Suiyu 23 0.682 0.064 0.974 0.542 0.904
吉单953 Jidan 953 0.660 0.148 0.953 0.589 0.894
垦吉268 Kenji 268 0.655 0.154 0.948 0.593 0.890
吉单96 Jidan 96 0.641 0.132 0.935 0.581 0.877
吉单95 Jidan 95 0.622 0.103 0.916 0.564 0.858
先玉335 Xianyu 335 0.590 -0.078 0.885 0.463 0.816
吉单441 Jidan 441 0.581 -0.076 0.876 0.464 0.808
吉单558 Jidan 558 0.546 0.221 0.841 0.631 0.807
郑单958 Zhengdan 958 0.555 0.026 0.850 0.521 0.796
鑫鑫1号 Xinxin 1 0.539 -0.183 0.834 0.403 0.764
吉东66 Jidong 66 0.450 0.388 0.748 0.724 0.744
丹玉311 Danyu 311 0.519 -0.286 0.815 0.346 0.738
垦吉269 Kenji 269 0.429 0.271 0.727 0.659 0.716
吉东60 Jidong 60 0.428 0.040 0.726 0.529 0.694
龙单42 Longdan 42 0.449 -0.486 0.746 0.233 0.663
绥玉42 Suiyu 42 0.316 0.495 0.616 0.784 0.644
龙育7号 Longyu 7 0.266 0.470 0.567 0.771 0.601
绥玉35 Suiyu 35 0.232 0.536 0.534 0.807 0.579
辽单586 Liaodan 586 0.235 0.383 0.536 0.721 0.567
吉单27 Jidan 27 0.176 0.879 0.479 1.000 0.564
龙单67 Longdan 67 0.373 -0.901 0.672 0.000 0.562
丹玉336 Danyu 336 0.270 -0.030 0.571 0.489 0.558
辽单575 Liaodan 575 0.230 0.310 0.532 0.680 0.557
辽单352 Liaodan 352 0.224 0.350 0.526 0.703 0.555
原单68 Yuandan 68 0.176 0.230 0.479 0.636 0.505
辽单1258 Liaodan 1258 0.205 -0.081 0.508 0.461 0.500
沈玉21 Shenyu 21 0.115 0.208 0.419 0.623 0.452
辽单1281 Liaodan 1281 0.089 0.319 0.394 0.686 0.442
吉单50 Jidan 50 -0.046 0.607 0.262 0.847 0.357
品种 Cultivar CL1 CL2 R1 R2 DD-value
克玉19 Keyu 19 -0.028 0.327 0.279 0.690 0.346
庆单3号 Qingdan 3 -0.069 0.507 0.239 0.791 0.329
绥玉29 Suiyu 29 -0.066 0.309 0.242 0.680 0.313
嫩单22 Nendan 22 -0.288 0.165 0.024 0.599 0.118
垦单15 Kendan 15 -0.313 0.139 0.000 0.585 0.096

Fig. 1

Cluster of cold tolerance of 36 maize hybrids at seed germination stage I: strong cold-tolerant hybrids; II: cold-tolerant hybrids; III: medium-tolerant hybrids; IV: sensitive hybrids."

Fig. 2

Seed morphology of different cold-tolerant varieties in maize I: strong cold-tolerant hybrids; II: cold-tolerant hybrids; III: medium-tolerant hybrids; IV: sensitive hybrids."

Fig. 3

Storage substances of seed storage from different cold-tolerant varieties in maize I: strong cold-tolerant hybrids; II: cold-tolerant hybrids; III: medium-tolerant hybrids; IV: sensitive hybrids."

Fig. 4

Correlation between seed morphology, storage material, and seed cold tolerance RSV: relative seedling vigor; RGR: relative germination rate; RSCR: relative seedling vigor chilling rate; RGCR: relative germination chill rate; RGT: relative germination time; KL: kernel length; KW: kernel width; KT: kernel thickness; KL/KW: kernel length to width ratio; 100-W: 100-kernel weight; 100-VOL: 100-kernel volume; St: starch content (%); Pr: protein content (%); Fa: fat content (%). **: P < 0.01; *: P < 0.05."

Fig. 5

Regression analysis of seed starch content and RSV, RGR (A), seed starch content and RSCR, RGCR (B), seed starch content and RGT (C), seed protein content and RSV (D) RSV: relative seedling vigor; RGR: relative germination rate; RSCR: relative seedling vigor chilling rate; RGCR: relative germination chill rate; RGT: relative germination time."

[1] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2009-2018.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Statistics Press, 2009-2018 (in Chinese).
[2] 黄秋婉, 刘志娟, 杨晓光, 白帆, 刘涛, 张镇涛, 孙爽, 赵锦. 东北三省西部春玉米适应气候变化的高产高效灌溉方案分析. 中国农业科学, 2020, 53:4470-4484.
Huang Q W, Liu Z J, Yang X G, Bai F, Liu T, Zhang Z T, Sun S, Zhao J. Analysis of suitable irrigation schemes with high- production and high-efficiency for spring maize to adapt to climate change in the west of Northeast China. Sci Agric Sin, 2020, 53:4470-4484 (in Chinese with English abstract).
[3] 杨若子, 周广胜. 东北三省玉米主要农业气象灾害综合危险性评估. 气象学报, 2015, 73:1141-1153.
Yang R Z, Zhou G S. A comprehensive risk assessment of the main maize agro-meteorological disasters in the three provinces of Northeast China. Acta Meteorol Sin, 2015, 73:1141-1153 (in Chinese with English abstract).
[4] 王芳, 王淇, 赵曦阳. 低温胁迫下植物的表型及生理响应机制研究进展. 分子植物育种, 2019, 17:5144-5153.
Wang F, Wang Q, Zhao X Y. Research progress of phenotype and physiological response mechanism of plants under low temperature stress. Mol Plant Breed, 2019, 17:5144-5153 (in Chinese with English abstract).
[5] 吕天放, 徐田军, 刘月娥, 张译天, 刘秀芝, 赵久然, 王荣焕. 低温胁迫对不同基因型玉米种子萌发特性的影响. 玉米科学, 2018, 26(6):45-49.
Lyu T F, Xu T J, Liu Y E, Zhang Y T, Liu X Z, Zhao J R, Wang R H. Effects of low temperature stress on seed germination of different maize. J Maize Sci, 2018, 26(6):45-49 (in Chinese with English abstract).
[6] 郭宗凯, 林中冠, 孙艳云, 郭飞, 宗英飞. 温度胁迫对玉米种子萌发出苗的影响. 中国农业资源与区划, 2020, 41(2):147-152.
Guo Z K, Lin Z G, Sun Y Y, Guo F, Zong Y F. The effect of temperature stress on the corn seed germination and emergence. Chin J Agric Res Reg Plan, 2020, 41(2):147-152 (in Chinese with English abstract).
[7] 徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉. 种子萌发及其调控的研究进展. 作物学报, 2014, 40:1141-1156.
Xu H H, Li N, Liu S J, Wang W Q, Wang W P, Zhang H, Cheng H Y, Song S Q. Research progress in seed germination and its control. Acta Agron Sin, 2014, 40:1141-1156 (in Chinese with English abstract).
[8] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价. 作物学报, 2020, 46:1591-1604.
Chen E Y, Wang R F, Qin L, Yang Y B, Li F F, Zhang H W, Wang H L, Liu B, Kong Q H, Guan Y A. Comprehensive identification and evaluation of foxtail millet for saline-alkaline tolerance during germination. Acta Agron Sin, 2020, 46:1591-1604 (in Chinese with English abstract).
[9] 刘杰, 张春宵, 李淑芳, 曹铁华, 梁烜赫, 刘学岩, 马永鑫, 郑大浩, 李晓辉. 81份玉米杂交种萌发期耐冷性的鉴定和评价. 玉米科学, 2020, 28(5):20-26.
Liu J, Zhang C X, Li S F, Cao T H, Liang X H, Liu X Y, Ma Y X, Zheng D H, Li X H. Identification and evaluation of eighty-one hybrids for chilling tolerance at maize germination stage. J Maize Sci, 2020, 28(5):20-26 (in Chinese with English abstract).
[10] 王成, 李月明, 郝楠, 王延波. 玉米自交系发芽期至苗期耐冷性鉴定. 种子, 2019, 38(12):6-12.
Wang C, Li Y M, Hao N, Wang Y B. Identification of cold tolerance of maize inbred lines from germination to seedling stage. Seed, 2019, 38(12):6-12 (in Chinese with English abstract).
[11] 胡单, 冯西博. 西藏玉米地方品种芽期抗寒性鉴定. 高原农业, 2018, 2:594-600.
Hu D, Feng X B. Identification of cold tolerance at germination stage of maize landraces in Tibet. J Plateau Agric, 2018, 2:594-600 (in Chinese with English abstract).
[12] 褚力嘉, 曹士亮, 靳羽晗, 李帅, 刘宝民, 于滔, 刘长华. 玉米萌发期耐冷性鉴定研究. 种子, 2020, 39(1):36-41.
Chu L J, Cao S L, Jin Y H, Li S, Liu B M, Yu T, Liu C H. Identification of cold tolerance during maize germination stage. Seed, 2020, 39(1):36-41 (in Chinese with English abstract).
[13] 王慧慧, 王普昶, 赵钢, 孙秋, 龙忠富, 张瑜. 干旱胁迫下白刺花种子大小与萌发对策. 生态学报, 2016, 36:335-341.
Wang H H, Wang P C, Zhao G, Sun Q, Long Z F, Zhang Y. Seed size and germination strategy of Sophora davidii under drought stress. Acta Ecol Sin, 2016, 36:335-341 (in Chinese with English abstract).
[14] 闫兴富, 邓晓娟, 王静, 周立彪, 张金峰, 罗永红. 种子大小和干旱胁迫对辽东栎幼苗生长和生理特性的影响. 应用生态学报, 2020, 31:3331-3339.
Yan X F, Deng X J, Wang J, Zhou L B, Zhang J F, Luo Y H. Effects of seed size and drought stress on the growth and physiological characteristics of Quercus wutaishanica seedlings. Chin J Appl Ecol, 2020, 31:3331-3339 (in Chinese with English abstract).
[15] 付锦雪, 张晨星, 王晓霞, 刘志柏, 秦永建, 张梦棋, 赵加瑞, 赵昱舒, 曹帮华, 毛培利. 水分胁迫和种子大小对侧柏种子萌发的影响. 种子, 2020, 39(2):50-57.
Fu J X, Zhang C X, Wang X X, Liu Z B, Qin Y J, Zhang M Q, Zhao J R, Zhao Y S, Cao B H, Mao P L. Effects of water stress and seed size on seed germination of Platycladus orientalis. Seed, 2020, 39(2):50-57 (in Chinese with English abstract).
[16] 王学经, 卜海燕, 周显辉, 徐当会, 刘伟, 齐威, 葛文静. 青藏高原东缘高寒草甸常见植物种子形状对萌发的影响. 植物科学学报, 2016, 34:391-396.
Wang X J, Bu H Y, Zhou X H, Xu D H, Liu W, Qi W, Ge W J. Effect of seed shape on germination in an alpine meadow on the Eastern Qinghai-Tibet Plateau. Plant Sci J, 2016, 34:391-396 (in Chinese with English abstract).
[17] 赵明, 张红香, 颜宏, 邱璐. 种子贮藏物质与萌发的关系. 土壤与作物, 2018, 7:189-200.
Zhao M, Zhang H X, Yan H, Qiu L. Relationship between seed storage reserve and seed germination. Soils Crops, 2018, 7:189-200 (in Chinese with English abstract).
[18] 朱鹤, 李憬霖, 徐敏, 金路路, 单莹, 王子胜. 作物种子的营养成分与其萌发特性关系的探讨. 种子, 2019, 38(8):47-52.
Zhu H, Li J L, Xu M, Jin L L, Shan Y, Wang Z S. Study on the relationship between nutrient composition and germination characteristics of crop seed. Seed, 2019, 38(8):47-52 (in Chinese with English abstract).
[19] 董伟欣, 韩立杰, 张月辰. 不同密度和行距对玉米生长特性、产量和籽粒营养成分的影响. 东北农业大学学报, 2020, 51(2):26-34.
Dong W X, Han L J, Zhang Y C. Effect of different densities and row spacings on growth characteristics, yield and grain nutrients of maize (Zea mays L.). J Northeast Agric Univ, 2020, 51(2):26-34 (in Chinese with English abstract).
[20] 徐晓雪, 孙飞, 肖梦颖, 张瑞栋, 周宇飞, 黄瑞冬. 高粱品种萌发期耐盐性筛选与鉴定. 种子, 2020, 39(8):6-11.
Xu X X, Sun F, Xiao M Y, Zhang R D, Zhou Y F, Huang R D. Screening and identification of salt-tolerant sorghum varieties at germination stage. Seed, 2020, 39(8):6-11 (in Chinese with English abstract).
[21] 孙东雷, 卞能飞, 陈志德, 邢兴华, 徐泽俊, 齐玉军, 王晓军, 王幸. 花生萌发期耐盐性综合评价及耐盐种质筛选. 植物遗传资源学报, 2017, 18:1079-1087.
Sun D L, Bian N F, Chen Z D, Xing X H, Xu Z J, Qi Y J, Wang X J, Wang X. Comprehensive evaluation of salt tolerance and screening for salt tolerant accessions of peanut (Arachis hypogaea L.) at germination stage. J Plant Genet Resour, 2017, 18:1079-1087 (in Chinese with English abstract).
[22] 张智猛, 慈敦伟, 丁红, 秦斐斐, 杨吉顺, 李尚霞, 宋文武, 戴良香. 花生种子大小和形状对出苗和幼苗建成的影响. 花生学报, 2014, 43(1):16-23.
Zhang Z M, Ci D W, Ding H, Qin F F, Yang J S, Li S X, Song W W, Dai L X. Effects of peanut seed size and shape on seedling emergence and establishment. J Peanut Sci, 2014, 43(1):16-23 (in Chinese with English abstract).
[23] 时伟芳, 贾佳, 冯鹏飞, 谢宗铭, 杨丽明, 王建华, 孙群. 春小麦种子物理指标与种子活力关系的初步分析. 中国农业大学学报, 2016, 21(7):1-12.
Shi W F, Jia J, Feng P F, Xie Z M, Yang L M, Wang J H, Sun Q. Preliminary analysis on correlations between seed vigor and physical traits of spring wheat. J Chin Agric Univ, 2016, 21(7):1-12 (in Chinese with English abstract).
[24] Liu M, Li D, Wang Z, Meng F, Li Y, Wu X, Teng W, Han Y, Li W. ThIPK2 gene in soybean improves stress tolerance, oleic acid content and seed size ThIPK2 gene in soybean improves stress tolerance, oleic acid content and seed size. Plant Cell Tiss Organ Cult, 2012, 111:277-289.
doi: 10.1007/s11240-012-0192-z
[25] Lorca E A, Ferreras A E, Funes G. Seed size and seedling ontogenetic stage as modulators of damage tolerance after simulated herbivory in a woody exotic species. Aust J Bot, 2019, 67:159-164.
doi: 10.1071/BT18093
[26] Kashme A M, Lifta R, Alselawy A, Alrubaye S M, Hasan F. Zea mays L.) cv. ‘Rabee’ Zea mays L.) cv. ‘Rabee’. Res Crops, 2019, 20:262-265.
[27] 金正律, 刘聪聪. NaCl胁迫与种子大小及其互作对玉米种子发芽及幼苗生长的影响. 种子, 2013, 32(3):21-24.
Jin Z L, Liu C C. Effect of NaCl stress, seed size and their interaction on seed germination and seedling growth of Zea mays L. Seed, 2013, 32(3):21-24 (in Chinese with English abstract).
[28] 杨晗, 刘鸿飞, 杨合龙, 戎郁萍. 贮藏温度和种子含水量对扁穗冰草种子质量的影响. 草业科学, 2016, 33:2033-2040.
Yang H, Liu H F, Yang H L, Rong Y P. Effect of storage temperature and moisture content on the seed’s quality of Agropyron cristatum. Pratac Sci, 2016, 33:2033-2040 (in Chinese with English abstract).
[29] 霍鸿浩, 杨占南, 罗世琼, 张曲玲, 韦小芳, 赵铖, 扶蝶. 黄花蒿种子形态与幼苗生长的地源差异及相关性. 西南农业学报, 2020, 33:2055-2061.
Huo H H, Yang Z N, Luo S Q, Zhang Q L, Wei X F, Zhao C, Fu D. Difference and correlation in seed morphology and seedling growth of Artemisia annua from different ground source. Southwest Chin J Agric Sci, 2020, 33:2055-2061 (in Chinese with English abstract)
[30] 江绪文, 李贺勤, 王建华. 不同大小玉米种子萌发及活力初步研究. 种子, 2014, 33(6):75-78.
Jiang X W, Li H Q, Wang J H. Preliminary study on germination and vigor of different seed size of maize (Zea mays L.). Seed, 2014, 33(6):75-78 (in Chinese with English abstract).
[31] 冯魁, 贾永红, 李琼, 田新年, 张金汕, 迪里夏提·尔肯, 刘俊, 石书兵. 春小麦新春31号种子活力与穗位和籽粒成熟度的关系. 麦类作物学报, 2017, 37:808-814.
Feng K, Jia Y H, Li Q, Tian X N, Zhang J S, Dilixiati E K, Liu J, Shi S B. Relationship between the seed vigor of the spring wheat Xinchun 31 and ear axis position and seed maturity. J Triticeae Crops, 2017, 37:808-814 (in Chinese with English abstract).
[32] 魏良明, 戴景瑞, 刘占先, 鄂立柱. 普通玉米蛋白质、淀粉和油分含量的遗传效应分析. 中国农业科学, 2008, 41:3845-3850.
Wei L M, Dai J R, Liu Z X,E L Z. Genetic effects of grain protein, starch and oil contents in maize. Sci Agric Sin, 2008, 41:3845-3850 (in Chinese with English abstract).
[33] 刘刚, 谭丽萍, 董勤. 农作物种子发芽时贮藏物质动员的红外光谱研究. 光谱学与光谱分析, 2008, 28(1):80-83.
Liu G, Tian L P, Dong Q. Infrared spectroscopic study on storage substance mobilization of crop seeds in germination. Spec Spect Anal, 2008, 28(1):80-83 (in Chinese with English abstract).
[34] 菅立群, 张翼飞, 杨克军, 王玉凤, 陈天宇, 张继卫, 张津松, 李庆, 刘天昊, 肖珊珊, 彭程, 王宝生. 播种至苗期不同阶段低温对玉米幼苗生长及生理抗性的影响. 作物杂志, 2020, (6):61-68.
Jian L Q, Zhang Y F, Yang K J, Wang Y F, Chen T Y, Zhang J W, Zhang J S, Li Q, Liu T H, Xiao S S, Peng C, Wang B S. Effects of low temperature under different phases between sowing and seedling periods on growth and physiological resistance of maize seedlings. Crops, 2020, (6):61-68 (in Chinese with English abstract).
[35] 陈珊, 毕鑫屹, 刘美玲, 李楠, 崔震海, 张敖, 阮燕晔. 玉米萌发成苗期渗透调节机制的研究进展. 江西农业学报, 2020, 32(6):34-40.
Chen S, Bi X Y, Liu M L, Li N, Cui Z H, Zhang A, Ruan Y Y. Research progress in mechanism of osmotic adjustment at germination and emergence stage in maize. Acta Agric Jiangxi, 2020, 32(6):34-40 (in Chinese with English abstract).
[36] 刘忠华, 董源, 路丙社. 阿月浑子种子萌发过程中贮藏物质含量的初步研究. 种子, 2002, 6(6):28-30.
Liu Z H, Dong Y, Lu B S. Preliminary studies on storage substance content during the germination of Pistacia vera seeds. Seed, 2002, 6(6):28-30 (in Chinese with English abstract).
[37] 张贝贝, 樊佳茹, 王景荣, 韩晓云, 袁慧敏, Wang-Pruski G, 张志忠. 模拟盐渍化对甜瓜种子萌发和幼苗生理特性的影响. 热带作物学报, 2020, 41:912-920.
Zhang B B, Fan J R, Wang J R, Han X Y, Yuan H M, Wang-Pruski G, Zhang Z Z. Effects of simulated salinization on seed germination and physiological characteristics of muskmelon seedlings. Chin J Trop Crops, 2020, 41:912-920 (in Chinese with English abstract).
[38] 杨杰, 江力, 张娇娇, 陈子平. 拟南芥抗旱突变体vem1对NaCl和ABA胁迫的响应. 植物生理学报, 2013, 49:337-342.
Yang J, Jiang L, Zhang J J, Chen Z P. Responses of the drought-resistant vem1 mutant to NaCl and ABA Stress in Arabidopsis. Plant Physiol J, 2013, 49:337-342 (in Chinese with English abstract).
[39] 狄义宁, 李自超, 谢林艳, 刘鲁峰, 谷书杰, 马豪, 李富生, 何丽莲. 接种甘蔗内生菌B9对不同甘蔗品种生长的影响. 热带作物学报, 2021, 42:149-158.
Di Y Y, Li Z C, Xie L Y, Liu L F, Gu S J, Ma H, Li F S, He L L. Impact of endophyte inoculation on the growth of different sugarcane varieties. Chin J Trop Crops, 2021, 42:149-158 (in Chinese with English abstract).
[40] Guo Q Q, Li X, Li N, Jameson P E, Zhou W B. Transcription-associated metabolomics adjustments in maize occur during combined drought and cold stress. Plant Physiology, 2021, 186:677-695.
doi: 10.1093/plphys/kiab050
[41] 李凌雨, 闫彩清, 王学雄, 李彩萍. 玉米杂交种间蛋白质、脂肪、赖氨酸含量变异分析. 山西农业科学, 2003, 31(4):18-20.
Yang L Y, Yan C Q, Wang X X, Li C P. Analysis of protein, fat and lysine level in maize hybrids. J Shanxi Agric Sci, 2003, 31(4):18-20 (in Chinese with English abstract).
[42] 赵欣欣, 刘继权, 王奇, 孙明春. 玉米种子对高温高湿老化的响应研究. 吉林农业科学, 2015, 40(2):11-15.
Zhao X X, Liu J Q, Wang Q, Sun M C. Studies on response of maize seed to aging of high temperature and high humidity. J Northeast Agric Sci, 2015, 40(2):11-15 (in Chinese with English abstract).
[43] 林鹿, 傅家瑞. 花生种子贮藏蛋白质合成和累积与活力的关系. 热带亚热带植物学报, 1995, 4:57-60.
Lin L, Fu J R. Relationship between the accumulation of storage proteins and formation of vigor of peanut seed. J Trop Subtrop Bot, 1995, 4:57-60 (in Chinese with English abstract).
[44] 孙建, 周红英, 乐美旺, 颜廷献, 饶月亮, 颜小文, 梁俊超, 叶艳英. 芝麻种子萌发动态及其代谢生理变化研究. 中国农业科技导报, 2020, 22(8):41-48.
Sun J, Zhou H Y, Le M W, Yan T X, Rao Y L, Yan X W, Liang J C, Ye Y Y. Germination dynamics and physiological changes of metabolism in sesame seed. J Agric Sci Technol, 2020, 22(8):41-48 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[6] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[7] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[8] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[9] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] LI Zhen-Hua, WANG Xian-Ya, LIU Yi-Ling, ZHAO Jie-Hong. NtPHYB1 interacts with light and temperature signal to regulate seed germination in Nicotiana tabacum L. [J]. Acta Agronomica Sinica, 2022, 48(1): 99-107.
[14] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[15] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
Full text



No Suggested Reading articles found!