Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (10): 2567-2574.doi: 10.3724/SP.J.1006.2022.14205

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of increased nitrogen fertilizer on square Bt protein expression and nitrogen metabolism in cotton

LI Han-Jia(), LI Yuan, LIU Zhen-Yu, ZHANG Chen-Xia, XU Ze, WU Tian-Fan, CHEN Yuan, ZHANG Xiang, CHEN Yuan, CHEN De-Hua()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-10-30 Accepted:2022-02-25 Online:2022-10-12 Published:2022-03-22
  • Contact: CHEN De-Hua E-mail:1311190875@qq.com;cdh@yzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31471435);National Natural Science Foundation of China(31671613);Natural Science Foundation of Jiangsu Province(BK20191439);Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)

Abstract:

To investigate the effects of increased nitrogen application on square Bt protein concentration in cotton, the experiments were conducted at Key Laboratory of Genetics and Physiology of Yangzhou University in 2017 and 2018. The conventional cultivar Sikang 1 and hybrid cultivar Sikang 3 were used as the experimental materials. Enhanced nitrogen fertilizer rates of increased 25% to 100% nitrogen (300 (CK), 375, 450, 525, and 600 kg hm-2 as pure nitrogen) were designed to study the effect on square Bt protein content and nitrogen metabolic physiological in cotton. Compared with the control (300 kg hm-2), the squares Bt protein content increased first, but bolstered extent was reduced when increased nitrogen was at 1.50-1.75 times of conventional nitrogen rates (450-525 kg hm-2). Bt protein content in square increased by 4.5%-132.7% with the increase of 25%-100% nitrogen application. The maximum value of square Bt protein content was observed at nitrogen rate of 450-525 kg hm-2. The physiological mechanism of nitrogen metabolism showed that the trend of soluble protein (SP), free amino acid (AA), and key enzymes of protein synthesis (glutamic oxalacetic Transaminase, GOT and glutamine synthetase, GS) in squares were consistent with those of Bt protein. The activities of key enzymes of protein decomposition (protease and peptidase) decreased with the increase of nitrogen application. In conclusion, the increasing nitrogen application at optimum level in soil would promote Bt protein synthesis and benefit the insect resistance.

Key words: Bt cotton, enhanced nitrogen fertilizer application, insecticidal protein, nitrogen metabolism

Table 1

Effects of increased nitrogen application on square Bt protein contents in cotton (ng g-1 FW)"

品种
Variety
处理
Treatment
2017 2018
18 d 21 d 24 d 18 d 21 d 24 d
SK-1 CK 103.36 d 153.64 b 195.74 g 133.65 fg 141.38 e 149.29 e
N1 163.00 d 195.61 b 249.73 f 147.53 de 159.51 d 162.81 d
N2 209.64 b 338.91 a 309.45 de 165.83 c 177.05 c 182.88 c
N3 240.48 a 323.90 a 387.85 ab 196.02 a 204.43 a 209.05 a
N4 198.60 bc 160.58 b 279.40 ef 153.26 d 170.06 c 176.32 c
SK-3 CK 94.20 d 175.06 b 318.58 cd 126.76 g 130.16 f 136.54 f
N1 144.72 c 193.67 b 332.95 cd 138.21 ef 142.21 e 149.32 e
N2 179.94 bc 354.54 a 354.32 bc 152.40 d 156.78 d 160.85 d
N3 176.10 bc 374.84 a 410.19 a 183.14 b 187.89 b 192.27 b
N4 164.28 bc 318.11 a 339.67 cd 144.98 de 149.95 de 156.77 d

Table 2

Effects of increased nitrogen application on square soluble protein content in cotton (mg g-1 FW)"

品种
Variety
处理
Treatment
2017 2018
18 d 21 d 24 d 18 d 21 d 24 d
SK-1 CK 0.45 e 0.57 cd 0.73 bc 0.25 de 0.22 e 0.43 c
N1 0.98 bc 0.83 bcd 0.81 ab 0.57 bc 0.34 de 0.78 bc
N2 1.18 ab 0.87 bc 0.90 ab 0.82 a 0.54 bcd 0.79 bc
N3 1.44 a 1.36 a 1.02 a 0.69 ab 0.70 bc 1.29 ab
N4 0.60 de 0.77 bcd 0.76 ab 0.63 abc 0.47 cde 0.75 bc
SK-3 CK 0.67 de 0.56 d 0.41 c 0.16 e 0.37 de 0.58 c
N1 0.84 cd 0.74 bcd 0.65 bc 0.32 de 0.53 bcd 0.86 bc
N2 1.26 a 0.87 b 0.97 ab 0.39 cde 1.24 a 1.54 a
N3 1.36 a 1.16 a 1.06 a 0.42 cd 0.80 b 1.87 a
N4 0.79 cd 0.68 bcd 0.63 bc 0.31 de 0.59 bcd 1.27 ab

Table 3

Effect of increased nitrogen application on square free amino acid content in cotton (mg g-1 FW)"

品种
Variety
处理
Treatment
2017 2018
18 d 21 d 24 d 18 d 21 d 24 d
SK-1 CK 6.83 e 6.72 g 6.23 d 3.86 b 3.51 f 5.37 e
N1 8.66 d 8.35 f 8.47 c 4.01 b 4.64 ef 6.54 d
N2 10.31 bc 11.37 cd 12.19 ab 6.35 a 6.35 cd 8.00 abc
N3 10.79 b 12.11 bc 12.81 a 6.52 a 6.86 bc 7.22 bcd
N4 9.34 cd 10.24 de 8.94 c 4.59 b 5.77 cde 6.94 cd
SK-3 CK 6.80 e 9.24 ef 5.73 d 2.60 c 5.29 de 6.79 cd
N1 8.72 d 9.78 e 6.69 d 3.54 bc 5.40 de 6.89 cd
N2 10.98 b 13.28 ab 11.01 b 3.81 b 7.72 ab 9.14 a
N3 12.53 a 14.33 a 12.32 ab 6.57 a 8.24 a 8.29 ab
N4 8.72 d 11.36 cd 8.57 c 3.65 bc 5.90 cde 7.74 bcd

Table 4

Effects of increased nitrogen application on square GOT activities in cotton (μmol g-1 h-1)"

品种
Variety
处理
Treatment
2017 2018
18 d 21 d 24 d 18 d 21 d 24 d
SK-1 CK 4.18 c 6.50 e 11.70 bc 3.79 d 4.13 c 2.69 c
N1 4.26 c 7.18 de 11.97 b 3.94 cd 4.47 c 3.65 abc
N2 4.84 bc 8.63 c 11.96 b 4.07 bcd 4.88 b 4.17 ab
N3 5.36 bc 13.97 a 10.76 cd 4.19 bcd 5.25 a 4.62 a
N4 4.84 bc 10.07 b 9.28 ef 3.97 cd 4.47 c 3.66 abc
SK-3 CK 4.49 bc 5.76 e 8.39 f 4.30 bcd 3.34 d 3.52 bc
N1 7.13 abc 6.98 e 9.82 de 4.57 abc 3.53 d 3.79 ab
N2 10.15 a 8.50 cd 10.81 cd 5.03 a 3.70 d 4.29 ab
N3 9.83 a 9.18 bc 13.67 a 4.78 ab 4.26 c 4.39 ab
N4 7.63 ab 6.62 e 11.95 b 4.72 ab 3.54 d 3.94 ab

Table 5

Effects of increased nitrogen application on square GS activities in cotton (U g-1 FW min-1)"

品种
Variety
处理
Treatment
2017 2018
18 d 21 d 24 d 18 d 21 d 24 d
SK-1 CK 3.92 f 6.46 h 7.00 f 3.47 f 5.78 f 6.94 cd
N1 6.20 e 9.32 f 9.10 d 5.35 d 7.10 d 7.51 cd
N2 8.37 c 11.25 d 11.42 b 6.30 b 8.07 bc 10.27 a
N3 9.22 ab 12.72 b 12.36 a 6.82 a 8.31 ab 10.35 a
N4 6.53 de 9.51 ef 9.61 c 5.98 c 8.05 bc 8.13 bc
SK-3 CK 3.70 f 7.52 g 7.33 e 4.92 e 5.85 f 6.77 d
N1 6.82 d 9.52 ef 9.30 d 5.45 d 6.46 e 7.35 cd
N2 9.10 b 11.68 c 11.61 b 6.84 a 7.82 c 9.13 ab
N3 9.51 a 13.57 a 12.22 a 6.85 a 8.61 a 9.51 a
N4 6.36 e 9.78 e 9.11 d 5.90 c 6.71 e 7.82 cd

Table 6

Effects of increased nitrogen application on square protease activities in cotton (μg g-1 min-1)"

品种
Variety
处理
Treatment
2017 2018
18 d 21 d 24 d 18 d 21 d 24 d
SK-1 CK 14.47 a 14.49 a 12.52 a 15.22 bc 16.67 ab 33.96 ab
N1 13.21 bc 14.28 a 11.97 a 14.61 bcd 15.76 abc 28.20 bcd
N2 12.34 de 12.16 cd 9.84 abc 13.88 cd 12.83 abcd 26.81 cde
N3 11.24 f 11.60 de 9.22 bc 10.59 e 11.67 bcd 17.97 fg
N4 11.65 ef 10.13 f 8.81 c 10.00 e 8.40 d 10.55 h
SK-3 CK 14.15 a 13.74 ab 12.40 a 17.81 a 18.35 a 34.48 a
N1 14.14 a 12.80 bc 11.72 ab 16.64 ab 16.21 ab 29.87 abc
N2 13.88 ab 12.93 bc 11.13 abc 12.38 de 14.23 abc 22.32 def
N3 12.72 cd 12.59 bcd 11.00 abc 9.93 e 11.36 bcd 20.66 ef
N4 12.30 de 10.98 ef 10.70 abc 9.92 e 10.21 cd 14.19 gh

Table 7

Effects of increased nitrogen application on square peptidase activities in cotton (U g-1 FW h-1)"

品种
Variety
处理Treatment 2017 2018
18 d 21 d 24 d 18 d 21 d 24 d
SK-1 CK 13.11 a 13.83 a 19.78 ab 16.45 a 16.04 ab 19.51 a
N1 10.91 b 11.25 bc 16.10 c 14.63 ab 14.45 abc 14.99 bc
N2 8.71 c 9.93 cd 15.62 c 10.11 cd 12.97 bcd 13.73 cd
N3 7.05 d 8.81 de 13.11 d 10.04 cd 10.98 d 13.02 cde
N4 5.52 e 6.09 f 11.06 e 8.60 d 10.79 d 10.49 e
SK-3 CK 13.82 a 14.39 a 20.65 a 15.08 ab 17.03 a 18.22 a
N1 12.52 a 12.06 b 18.65 b 14.66 ab 15.98 ab 16.89 ab
N2 10.26 b 11.05 bc 16.51 c 13.10 abc 12.46 cd 13.76 cd
N3 7.79 cd 9.04 de 13.83 d 12.42 abcd 10.34 d 12.54 cde
N4 5.35 e 8.03 e 11.88 e 12.18 bcd 10.29 d 11.39 de

Fig. 1

Relationship between square Bt insecticidal protein content and main chemical substances, key enzyme activities of nitrogen metabolism SP: soluble protein; AA: free amino acid; GOT: glutamic oxalacetic transaminase; GS: glutamine synthetase. The positive or negative coefficients represent the positive or negative effects and the magnitude of contribution to Bt protein content. **: P < 0.01."

[1] James C. Preview: global status of commercialized biotech/GM crops. ISAAA Briefs, 2004, 32: 1-12.
[2] 郭香墨, 范术丽, 王红梅, 严根土. 我国棉花育种技术的创新与成就. 棉花学报, 2007, 19: 323-330.
Guo X M, Fan S L, Wang H M, Yan G T. Achievements of technical innovation about cotton genetics and breeding in China. Cotton Sci, 2007, 19: 323-330. (in Chinese with English abstract)
[3] 夏敬源, 邹奎, 马志强, 夏文省, 柏长青. 国产转基因抗虫棉技术集成创新与推广应用. 中国棉花, 2006, 33(10): 2-5.
Xia J Y, Zou K, Ma Z Q, Xia W S, Bai C Q. Domestic transgenic cotton technology integration innovation and application. China Cotton, 2006, 33(10): 2-5. (in Chinese)
[4] 魏艳丽, 黄玉杰, 李红梅, 孙红星, 杨合同. 棉花转基因技术研究. 山东科学, 2008, 21(3): 38-41.
Wei Y L, Huang Y J, Li H M, Sun H X, Yang H T. A survey of cotton transgene technology. Shandong Sci, 2008, 21(3): 38-41. (in Chinese with English abstract)
[5] 李悦有, 翟黎芳, 卢川. 河北棉区的棉花生产现状及发展策略分析. 棉花科学, 2016, 38(3): 8-13.
Li Y Y, Zhai L F, Lu C. Analysis of cotton production situation and development strategy in Hebei cotton area. Cotton Sci, 2016, 38(3): 8-13. (in Chinese with English abstract)
[6] James C. Global biotechnology/GM crops commercialization development trend in 2015. China Biotechnol, 2016, 36: 1-11.
[7] 钟永玲. 2007/08年度国内棉花产需形势分析. 农业展望, 2007, (10): 6-10.
Zhong Y L. Analysis of domestic cotton production and demand in 2007/08. Agric Outlook, 2007, (10): 6-10. (in Chinese)
[8] 丰嵘, 张宝红, 郭香墨. 外源Bt基因对棉花产量性状及抗虫性的影响. 棉花学报, 1996, (1): 10-13.
Feng R, Zhang B H, Guo X M. Effects of exorenous Bt gene on yield properties and insect resistance of cotton. Cotton Sci, 1996, (1): 10-13. (in Chinese with English abstract)
[9] 温四民, 董合忠, 辛呈松. Bt棉抗虫性差异表达的研究进展. 河南农业科学, 2007, 36(1): 9-12.
Wen S M, Dong H Z, Xin C S. Research progress on the differential expression of insect resistance of Bt cotton. J Henan Agric Sci, 2007, 36(1): 9-12. (in Chinese with English abstract)
[10] 邢朝柱, 靖深蓉, 崔学芬, 郭立平, 王海林, 袁有禄. 转Bt基因棉杀虫蛋白含量时空分布及对棉铃虫产生抗虫的影响. 棉花学报, 2011, 13: 11-15.
Xing C Z, Jing S R, Cui X F, Guo L P, Wang H L, Yuan Y L. The spatio-temporal distribution of Bt (Bacillus thuringiensis) insecticidal protein and the effect of transgenic Bt cotton on bollworm resistance. Cotton Sci, 2001, 13: 11-15. (in Chinese with English abstract)
[11] 余恩, 蔡芸菲, 赵茹冰, 陈进红, 祝水金. 2个转基因抗虫杂交棉Bt蛋白含量的时空表达特性研究. 浙江大学学报(农业与生命科学版), 2016, 42(1): 17-22.
Yu E, Cai Y F, Zhao R B, Chen J H, Zhu S J. Studies on temporal-spatial expression characters of Bt protein in two transgenic hybrid cotton. J Zhejiang Univ (Agric Life Sci Edn), 2016, 42(1): 17-22. (in Chinese with English abstract)
[12] Pettigrew W T, Adamczyk J J. Nitrogen fertility and planting date effects on lint yield and Cry1Ac (Bt) endotoxin production. Agron J, 2006, 98: 691-697.
doi: 10.2134/agronj2005.0327
[13] Chen Y, Li Y B, Zhou M Y, Rui Q Z, Cai Z Z, Zhang X, Chen D H. Nitrogen (N) application gradually enhances boll development and decreases boll shell insecticidal protein content in N-deficient cotton. Front Plant Sci, 2018, 9: 51.
[14] 陈松, 吴敬音, 何小兰, 黄骏麒, 周宝良, 张荣铣. 转基因抗虫棉组织中Bt毒蛋白表达量的ELISA测定. 江苏农业学报, 1997, 13(3): 27-29.
Chen S, Wu J Y, He X L, Huang J Q, Zhou B L, Zhang R X. Quantification using ELISA of Bacillus thuringiensis insecticidal protein expressed in the tissue of transgenic insect resistant cotton. Jiangsu J Agric Sci, 1997, 13(3): 27-29. (in Chinese with English abstract)
[15] 邵金良, 黎其万, 董宝生, 刘宏程, 束继红. 茚三酮比色法测定茶叶中游离氨基酸总量. 中国食品添加剂, 2008, (2): 162-165.
Shao J L, Li Q W, Dong B S, Liu H C, Shu J H. Determination of total free-amino acid in tea by Nihydrin colorimetry. China Food Add, 2008, (2): 162-165. (in Chinese with English abstract)
[16] 扬州大学农学院. 作物栽培生理研究法实验讲义. 扬州: 扬州大学出版社, 2007. pp 3-6.
Agricultural College of Yangzhou University. Experimental Lecture Notes for Physiological Research Methods of Crop Cultivation. Yangzhou: Yangzhou University Press, 2007. pp 3-6. (in Chinese)
[17] 吴良欢, 蒋式洪, 陶勤南. 植物转氨酶(GOT和GPT)活度比色测定方法及其应用. 土壤通报, 1998, 29(3): 41-43.
Wu L H, Jiang S H, Tao Q N. Plant aminotransferase (GOT and GPT) determination method and its application of activity colorimetric. China J Soil Sci, 1998, 29(3): 41-43. (in Chinese)
[18] Mifin B J, Lea P J. The Biochemistry of Plants. New York: Academic Press, 1980. pp 169-202.
[19] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2003. pp 129-131.
Zou Q. Experimental Guide of Plant Physiology. Beijing: China Agriculture Press, 2003. pp 129-131. (in Chinese)
[20] Zhou M Y, Liu Z Y, Li L N, Chen Y, Zhang X, Chen D H. Effect of urea spray on boll shell insecticidal protein content in Bt cotton. Front Plant Sci, 2021, 12 : 623504.
[21] 花明明, 衡丽, 胡大鹏, 张雷, 陈源, 陈德华, 张祥. 氮肥对小麦后直播棉生长发育及氮素积累的影响. 江苏农业科学, 2015, 43(12): 73-76.
Hua M M, Heng L, Hu D P, Zhang L, Chen Y, Chen D H, Zhang X. Effects of nitrogen fertilizer on growth and nitrogen accumulation of direct seeding cotton after wheat. Jiangsu Agric Sci, 2015, 43(12): 73-76. (in Chinese)
[22] 王子胜, 徐敏, 刘瑞显, 吴晓东, 朱鹤, 陈兵林, 周治国. 施氮量对不同熟期棉花品种的生物量和氮素累积的影响. 棉花学报, 2011, 23: 537-544.
Wang Z S, Xu M, Liu R X, Wu X D, Zhu H, Chen B L, Zhou Z G. Effects of nitrogen rates on biomass and nitrogen accumulation of cotton with different varieties in growth duration. Cotton Sci, 2011, 23: 537-544. (in Chinese with English abstract)
[23] 胡明芳, 田长彦, 王林霞. 氮肥用量与施用时期对棉花生长发育及土壤矿质氮含量的影响. 西北农林科技大学学报(自然科学版), 2011, 39(11): 103-109.
Hu M F, Tian C Y, Wang L X. Effects of nitrogen rate, applying time on cotton growth and soil mineral nitrogen content. J Northwest A&F Univ (Nat Sci Edn), 2011, 39(11): 103-109. (in Chinese with English abstract)
[24] Maike S, Joseph M, Jan K. Review article: the silence of genes in transgenic plants. Annals Bot, 1997, 79: 3-12.
[25] Fitt G, Finnegan E, Llewellyn D. What is happening to the expression of the insect protection in field-grown INGARD cotton? The Ninth Australian Cotton Conference Proceedings, 1998. pp291-297.
[26] 陈德华, 杨长琴, 陈源, 聂安全, 吴云康. 高温胁迫对Bt棉叶片杀虫蛋白表达量和氮代谢影响的研究. 棉花学报, 2003, 15(5): 288-292.
Chen D H, Yang C Q, Chen Y, Nie A Q, Wu Y K. The effects of the high temperature stress on the leaf Bt protein content and nitrogen metabolism of Bt cotton. Cotton Sci, 2003, 15(5): 288-292. (in Chinese with English abstract)
[27] 张祥, 刘晓飞, 吕春花, 王桂霞, 陈源, 陈德华. 低温对转Bt基因棉杀虫蛋白表达及其氮代谢的影响. 棉花学报, 2012, 24: 159-166.
Zhang X, Liu X F, Lyu C H, Wang G X, Chen Y, Chen D H. Effect of low temperature on the insecticidal properties and nitrogen metabolism of Bt cotton. Cotton Sci, 2012, 24: 159-166. (in Chinese with English abstract)
[28] 陈源, 顾超, 王桂霞, 吕春花, 刘晓飞, 张祥, 陈德华. 蕾期低温及湿度胁迫对Bt棉杀虫蛋白表达量的影响. 作物学报, 2013, 39: 184-189.
doi: 10.3724/SP.J.1006.2013.00184
Chen Y, Gu C, Wang G X, Lyu C H, Liu X F, Zhang X, Chen D H. Effect on stresses of 18℃ and different relative humidities on Bt protein expression at squaring stage in Bt cotton. Acta Agron Sin, 2013, 39: 184-189. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00184
[1] PEI Li-Zhen, CHEN Yuan-Xue, ZHANG Wen-Wen, XIAO Hua, ZHANG Sen, ZHOU Yuan, XU Kai-Wei. Effects of organic material returned on photosynthetic performance and nitrogen metabolism of ear leaf in summer maize [J]. Acta Agronomica Sinica, 2022, 48(8): 2115-2124.
[2] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
[3] LUO Kai, XIE Chen, WANG Jin, WANG Tian, HE Shun, YONG Tai-Wen, YANG Wen-Yu. Effect of exogenous plant growth regulators on carbon-nitrogen metabolism and flower-pod abscission of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2021, 47(4): 752-760.
[4] LYU Teng-Fei, SHEN Jie, DAI Zou, MA Peng, YANG Zhi-Yuan, ZHENG Chuan-Gang, MA Jun. Effects of combined application of slow release nitrogen fertilizer and urea on carbon and nitrogen accumulation in mechanical transplanted hybrid rice [J]. Acta Agronomica Sinica, 2021, 47(10): 1966-1977.
[5] XIN Zheng-Qi, DAI Huan-Huan, XIN Yu-Feng, HE Xiao, XIE Hai-Yan, WU Neng-Biao. Effects of exogenous 2,4-Epibrassinolide on nitrogen metabolism and TAs metabolism of Atropa belladonna L. under NaCl stress [J]. Acta Agronomica Sinica, 2021, 47(10): 2001-2011.
[6] Jing-Nan ZOU,Qi YU,Xi-Jun JIN,Ming-Yao WANG,Bin QIN,Chun-Yuan REN,Meng-Xue WANG,Yu-Xian ZHANG. Effects of exogenous melatonin on physiology and yield of soybean during seed filling stage under drought stress [J]. Acta Agronomica Sinica, 2020, 46(5): 745-758.
[7] Zhen-Yu LIU,Gui-Xia WANG,Li-Nan LI,Ze-Zhou CAI,Pan-Pan LIANG,Xin-Ling WU,Xiang ZHANG,De-Hua CHEN. Recovery characteristics of Bt insecticidal protein and relative physiological mechanisms after high temperature stress termination in square of Bt cotton [J]. Acta Agronomica Sinica, 2020, 46(3): 440-447.
[8] Ke DANG,Xiang-Wei GONG,Guang-Hua CHEN,Guan ZHAO,Long LIU,Hong-Lu WANG,Pu YANG,Bai-Li FENG. Nitrogen accumulation, metabolism, and yield of proso millet in proso millet- mung bean intercropping systems [J]. Acta Agronomica Sinica, 2019, 45(12): 1880-1890.
[9] Jian-Fei ZHOU,Yun-Jie WU,Gang XUE,An-Qian ZHANG,Pei TIAN,Yu-Fu PENG,Tie-Zhao YANG. Relationship between GS isoenzyme activity and nitrogen transportation in flue-cured tobacco leaves [J]. Acta Agronomica Sinica, 2019, 45(1): 111-117.
[10] Ke-Huan LU,Xing LIU,Yi YANG,Zhi-Hua LIAO,Neng-Biao WU. Effect of Exogenous Ca 2+ on Physiological Characteristics and Secondary Metabolites accumulation of Atropa belladonna L. Seedlings under UV-B Stress [J]. Acta Agronomica Sinica, 2018, 44(10): 1527-1538.
[11] LI Yuan, LI Ya-Bing, HU Da-Peng, WANG Jun, HENG Li, ZHANG Xiang, CHEN Yuan, CHEN De-Hua. Effects of Waterlogging on Bt Protein Content and Nitrogen Metabolism in Square of Bt Cotton [J]. Acta Agron Sin, 2017, 43(11): 1658-1666.
[12] HENG Li,HU Da-Peng,WANG Gui-Xia,LYU Chun-Hua,ZHANG Xiang,CHEN Yuan,CHEN De-Hua. Effect of High Temperature Stress on Bt Insecticidal Protein Content and Nitrogen Metabolism of Square in Bt Cotton [J]. Acta Agron Sin, 2016, 42(09): 1374-1380.
[13] ZHOU Wei-Xia,DONG Peng-Fei,WANG Xiu-Ping,LI CHAO-Hai. Effects of Low-light Stress on Kernel Setting, and Carbon and Nitrogen Metabolism of Different Maize (Zea mays L.) Genotypes [J]. Acta Agron Sin, 2013, 39(10): 1826-1834.
[14] ZHAO Feng, ZHANG Wei-Jian, ZHANG Xiu-Fu, WANG Dan-Yang, XU Chun-Mei. Effect of Continuous Aeration on Growth and Activity of Enzymes Related to Nitrogen Metabolism of Different Rice Genotypes at Tillering Stage [J]. Acta Agron Sin, 2012, 38(02): 344-351.
[15] CAO Zhen-Zhen, ZHANG Ji-Fang, HUI Ke-Su, YANG Wei-Li, LIU Guang-Kuai, CHENG Fang-Min. Response of Some Key Enzyme Activities Involved in Nitrogen Metabolism to High Temperature at Filling Stage and Its Relation to Storage Protein Accumulation in Rice Grain [J]. Acta Agron Sin, 2012, 38(01): 99-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[2] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[3] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[4] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[5] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .
[6] Huang Ce;Wang Tian-duo. COMPUTER SIMULATION OF BIOMASS PRODUCTION IN RICE COMMUNITY[J]. Acta Agron Sin, 1986, (01): 1 -8 .
[7] CHEN Ji-Bao;JING Rui-Lian;MAO Xin-Guo;CHANG Xiao-Ping;WANG Shu-Min. A Response of PvP5CS2 Gene to Abiotic Stresses in Common Bean[J]. Acta Agron Sin, 2008, 34(07): 1121 -1127 .
[8] LIU Wu-Ge;WANG Feng;JIN Su-Juan;ZHU Xiao-Yuan;LI Jin-Hua;LIU Zhen-Rong;LIAO Yi-Long;ZHU Man-Shan;HUANG Hui-Jun; FU Fu-Hong;LIU Yi-Bai. Improvement of Rice Blast Resistance in TGMS Line by Pyramiding of Pi-1 and Pi-2 through Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(07): 1128 -1136 .
[9] ZHANG Wen-Jing;HU Hong-Biao;CHEN Bing-Lin;WANG You-Hua;ZHOU Zhi-Guo. Difference of Physiological Characteristics of Cotton Bolls in Development of Fiber Thickening and Its Relationship with Fiber Strength[J]. Acta Agron Sin, 2008, 34(05): 859 -869 .
[10]

CHANG Li-Ying;GU Dong-Xiang;ZHANG Wen-Yu;YANG Jie;CAO Wei-Xing;ZHU Yan

. A Simulation Model of Leaf Elongation Process in Rice[J]. Acta Agron Sin, 2008, 34(02): 311 -317 .