Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (10): 2575-2587.doi: 10.3724/SP.J.1006.2022.14174

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Responses of soil diazotrophic diversity and community composition of nodulating and non-nodulating peanuts (Arachis hypogaea L.) to nitrogen fertilization

SUN Qi-Qi(), ZHENG Yong-Mei, YU Tian-Yi, WU Yue, YANG Ji-Shun, WU Zheng-Feng(), WU Ju-Xiang, LI Shang-Xia   

  1. Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
  • Received:2021-10-04 Accepted:2022-02-25 Online:2022-10-12 Published:2022-03-24
  • Contact: WU Zheng-Feng E-mail:sunshine19890707@163.com;wzf326@126.com
  • Supported by:
    National Key Research and Development Program of China(2018YFD1000906);China Agriculture Research System of MOF and MARA(CARS-13);Natural Science Foundation of Shandong Province(ZR202103030197)

Abstract:

Influencing mechanism of nitrogen (N) fertilization on soil diazotrophs of legumes remains unclear. Further study on the effect of different nitrogen application rates on soil nitrogen-fixing is of critical importance for high-efficiency nitrogen application of peanut field and agricultural sustainability development. We used the non-nodulating (BL) and nodulating (Huayu 22, HY22) peanuts as experimental materials, with four N application rates arranged, including N0 (without N application, 0 kg hm-2), N60 (N reduced-application, 60 kg hm-2), N120 (N common-fertilization, 120 kg hm-2), and N180 (N over-application, 180 kg hm-2). The qRT-PCR and Illumina high-throughput sequencing of nifH gene were used to analyze soil diazotrophic abundance, diversity, and community composition. Results showed that: (1) N fertilization significantly increased the contents of soil N fraction. Especially at N120, the soil microbial biomass carbon and dissolved organic carbon of nodulating peanut were significantly higher than that of non-nodulating peanut. The podding yields of non-nodulating peanut increased positively and linearly with the increasing N rates, while those of nodulating peanut was unaffected by N fertilization. (2) Under N fertilization, soil nifH copies of non-nodulating peanut were inhibited, while that of nodulating peanut decreased firstly and then increased with N rates increased. (3) N fertilization reduced firstly and then enhanced the soil diazotrophic diversity from non-nodulating peanut with N rates, while N fertilization increased firstly and then decreased that from nodulating peanut, with peak value at N120. (4) Nonrank_Bacteria and Proteobacteria were the predominated phyla. N fertilization altered the soil diazotrophic community composition of non-nodulating peanut, with dominant genera being nonrank_Bacteria (N0), unclassified_Cyanoabcteria (N60), nonrank_Bacteria (N120), and Skermanella (N180), respectively, and NO3-N being the overriding determinative factor, while exerted no effect on that of nodulating peanut (being dominated by unclassified_Proteobacteria and Skermanella except N120). The different responses of soil nitrogen-fixing bacteria to nitrogen application level between non-nodulating peanut and nodulating peanut may be due to the influence of different nitrogen sources (nitrogen fixed by nodules vs. N fertilizer). In conclusion, 120 kg hm-2 was the best for nitrogen-fixation of peanut field and thus agricultural production among the studied N rates.

Key words: peanut, nodulation characteristics, diazotrophs, nitrogen fertilization, nitrogen fixation by nodules

Table 1

Soil N fractions of non-nodulating (BL) and nodulating (HY22) peanuts under different N application rates and podding yields"

品种
Variety
施氮水平
N application rates
全氮
TN (g kg-1)
硝态氮
NO3-N (mg kg-1)
铵态氮
NH4-N (mg kg-1)
可溶性有机氮
DON (mg kg-1)
微生物量氮
MBN (mg kg-1)
产量Yields (kg hm-2)
2019 2020
BL N0 0.68±0.02 Ab 8.71±2.48 Ab 1.04±0.12 Aab 5.27±1.09 Ab 8.62±2.14 Aa 3514.1±36.7 Bb 1578.5±28.3 Bc
N60 0.68±0.00 Ab 7.97±0.45 Ab 0.84±0.07 Ab 9.19±1.32 Aab 10.90±1.21 Aa 3736.3±70.5 Ab 2091.6±154.1 Abc
N120 0.78±0.00 Aa 16.60±2.37 Aab 1.79±0.30 Aa 15.02±3.57 Ba 9.54±0.95 Ba 4236.3±152.8 Aa 2392.3±40.8 Bab
N180 0.68±0.01 Ab 23.15±5.92 Aa 1.77±0.33 Aa 9.59±0.98 Aab 9.39±1.10 Aa 4312.7±0.0 Aa 2817.1±306.4 Ba
HY22 N0 0.68±0.02 Ab 4.28±1.92 Ab 0.84±0.03 Ab 12.97±7.31 Abc 1.79±0.06 Bb 5236.4±160.2 Aa 4052.5±693.7 Aa
N60 0.67±0.01 Ab 6.37±2.60 Aab 0.92±0.03 Ab 8.83±0.31 Ac 2.30±1.80 Bb 5090.6±498.1 Aa 4346.6±855.8 Aa
N120 0.75±0.01 Ba 9.72±1.08 Ba 1.14±0.19 Aa 43.38±12.93 Aa 26.10±5.76 Aa 5375.3±445.6 Aa 4666.9±367.0 Aa
N180 0.70±0.04 Aab 8.71±1.08 Aa 0.87±0.01 Ab 34.17±18.85 Aab 5.05±1.39 Bb 5229.4±271.1 Aa 4810.7±260.7 Aa
显著性Significance (F-value)
品种Variety ns ** ** ** ns ** **
施氮水平N rates ** ** ** ** ** ns ns
品种×施氮水平Variety × N rates ns ns * * ** ns ns

Fig. 1

Correlations between podding yields of non-nodulating (BL) and nodulating (HY22) peanuts and N fertilization rates HY22: Huayu 22."

Fig. 2

Soil nifH gene copy quantities of non-nodulating (BL) and nodulating (HY22) peanuts under different N application rates Lower case letters within a group (BL/HY22) indicate significant difference among different N application rates at P < 0.05, upper case letters between groups (BL and HY22) indicate significant difference between different peanut cultivars at P < 0.05. Treatments are the same as those given in Table 1. HY22: Huayu 22."

Fig. 3

Rarefaction curves (a, b) and Venn figures (c, d) of the soil diazotrophic communities of non-nodulating (BL) and nodulating (HY22) peanuts with different N application rates Treatments are the same as those given in Table 1. HY22: Huayu 22."

Fig. 4

Chao1 richness (a, b) and Shannon diversity (c, d) indices of diazotrophic communities of non-nodulating (BL) and nodulating (HY22) peanuts and their correlations with N application rates(e, f) HY22: Huayu 22. Treatments are the same as those given in Table 1. **: significant difference at the 0.01 probability level; *: significant difference at the 0.05 probability level; ns: no significant difference."

Fig. 5

Relative abundances of the abundant diazotrophs at the phylum (a, b), class (c, d), and genus (e, f) levels of non-nodulating (BL) and nodulating (HY22) peanuts with different N application rates Treatments are the same as those given in Table 1. HY22: Huayu 22."

Fig. 6

Ordination plots of the results from the RDA to identify relationships between diazotrophic communities (red dotted lines) and soil N fractions (black arrows) of non-nodulating (a) and nodulating (b) DON: dissolved organic nitrogen; MBN: microbial biomass nitrogen; NO3-N: nitrate nitrogen; NH4-N: ammonium nitrogen; TN: total notrogen. HY22: Huyu 22."

[1] Cleveland C C, Townsend A R, Schimel D S, Fisher H, Howarth R W, Hedin L O, Perakis S S, Latty E F, Fischer J C V, Elseroad A. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycles, 1999, 13: 623-645.
doi: 10.1029/1999GB900014
[2] Roesch L, Camargo F, Bento F M, Triplett E W. Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil, 2008, 302: 91-104.
doi: 10.1007/s11104-007-9458-3
[3] Hsu S F, Buckley D H. Evidence for the functional significance of diazotroph community structure in soil. ISME J, 2008, 3: 124-136.
doi: 10.1038/ismej.2008.82
[4] Li Y, Pan F, Yao H. Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application. J Soils Sediments, 2019, 19: 1948-1958.
doi: 10.1007/s11368-018-2192-z
[5] 郑棉海, 陈浩, 朱晓敏, 毛庆功, 莫江明. 矿质养分输入对森林生物固氮的影响. 生态学报, 2015, 35: 7941-7954.
Zheng M H, Chen H, Zhu X M, Mao Q G, Mo J M. Effect of mineral nutrient input on biological nitrogen fixation in forest. Acta Ecol Sin, 2015, 35: 7941-7954. (in Chinese with English abstract)
[6] Chen L, Li K K, Shi W J, Wang X L, Chen W X. Negative impacts of excessive nitrogen fertilization on the abundance and diversity of diazotrophs in black soil under maize monocropping. Geoderma, 2021, 393: 114999.
[7] Wang C, Zheng M, Song W, Wen S, Wang B, Zhu C, Shen R. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China. Soil Biol Biochem, 2017, 113: 240-249.
doi: 10.1016/j.soilbio.2017.06.019
[8] Reed R, Marjon D V, Portilho C N, Evódio M, Edilson P, Lucy S. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer. FEMS Microbiol Lett, 2010, 279: 15-22.
doi: 10.1111/j.1574-6968.2007.00975.x
[9] Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, Yu W, Yao H, Zhu Y G, Chu H. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome, 2019, 7: 143.
[10] Wang J, Li Q, Shen C, Yang F, Wang J, Yuan G. Significant dose effects of fertilizers on soil diazotrophic diversity, community composition, and assembly processes in a long-term paddy field fertilization experiment. Land Degrad Develop, 2021, 32: 1-10.
doi: 10.1002/ldr.3658
[11] Sun Q, Rui W, Ying W, Du L, Man Z, Xin G, Hu Y, Guo S. Temperature sensitivity of soil respiration to nitrogen and phosphorous fertilization: Does soil initial fertility matter? Geoderma, 2018, 325: 172-182.
doi: 10.1016/j.geoderma.2018.04.001
[12] Liao H, Li Y, Yao H. Fertilization with inorganic and organic nutrients changes diazotroph community composition and N-fixation rates. J Soils Sediments, 2017, 18: 1076-1086.
doi: 10.1007/s11368-017-1836-8
[13] 陈洁, 骆土寿, 周璋, 许涵, 陈德祥, 李意德. 氮沉降对热带亚热带森林土壤氮循环微生物过程的影响研究进展. 生态学报, 2020, 40: 8528-8538.
Chen J, Luo T S, Zhou Z, Xu H, Chen D X, Li Y D. Research advances in nitrogen deposition effects on microbial processes involved in soil nitrogen cycling in tropical and subtropical forests. Acta Ecol Sin, 2020, 40: 8528-8538. (in Chinese with English abstract)
[14] Jacot K A, Lüscher A, NöSberger J, Hartwig U A. Symbiotic N2 fixation of various legume species along an altitudinal gradient in the Swiss Alps. Soil Biol Biochem, 2000, 32: 1043-1052.
doi: 10.1016/S0038-0717(00)00012-2
[15] Rösch C, Mergel A, Hermann Bothe H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol, 2002, 68: 3818-3829.
doi: 10.1128/AEM.68.8.3818-3829.2002
[16] Xiao D, Tan Y, Liu X, Yang R, Wang K. Responses of soil diazotrophs to legume species and density in a karst grassland, southwest China. Agric Ecosyst Environ, 2020, 288: 106707.
[17] Wang C B, Zheng Y M, Shen P, Zheng Y P, Wu Z F, Sun X W, Yu T Y, Feng H. Determining N supplied sources and N use efficiency for peanut under applications of four forms of N fertilizers labeled by isotope 15N. J Integr Agric, 2016, 15: 432-439.
doi: 10.1016/S2095-3119(15)61079-6
[18] 吴正锋, 陈殿绪, 郑永美, 王才斌, 孙学武, 李向东, 王兴祥, 石程仁, 冯昊. 花生不同氮源供氮特性及氮肥利用率研究. 中国油料作物学报, 2016, 38: 207-213.
Wu Z F, Chen D X, Zheng Y M, Wang C B, Sun X W, Li X D, Wang X X, Shi C R, Feng H. Supply characteristics of different nitrogen sources and nitrogen use efficiency of peanut. Chin J Oil Crop Sci, 2016, 38: 207-213. (in Chinese with English abstract)
[19] 郑永美, 杜连涛, 王春晓, 吴正锋, 孙学武, 于天一, 沈浦, 王才斌. 不同花生品种根瘤固氮特点及其与产量的关系. 应用生态学报, 2019, 30: 961-968.
pmid: 30912389
Zheng Y M, Du L T, Wang C X, Wu Z F, Sun X W, Yu T Y, Shen P, Wang C B. Nitrogen fixation characteristics of root nodules in different peanut varieties and their relationship with yield. Chin J Appl Ecol, 2019, 30: 961-968. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.201903.019 pmid: 30912389
[20] 左元梅, 刘永秀, 张福锁. NO3-态氮对花生结瘤与固氮作用的影响. 生态学报, 2003, 23: 758-764.
Zuo Y M, Liu Y X, Zhang F S. Effects of the NO3--N on nodule formation and nitrogen fixing of peanut. Acta Ecol Sin, 2003, 23: 758-764. (in Chinese with English abstract)
[21] Lin Y, Ye G, Liu D, Ledgard S, Luo J, Fan J, Yuan J, Chen Z, Ding W. Long-term application of lime or pig manure rather than plant residues suppressed diazotroph abundance and diversity and altered community structure in an acidic Ultisol. Soil Biol Biochem, 2018, 123: 218-228.
doi: 10.1016/j.soilbio.2018.05.018
[22] 吴海宁, 黄志鹏, 唐秀梅, 熊发前, 钟瑞春, 贺梁琼, 韩柱强, 蒋菁, 刘菁, 唐荣华. 氮肥减施对花生根际土壤固氮微生物多样性的影响. 江苏农业科学, 2019, 47(16): 93-97.
Wu H N, Huang Z P, Tang X M, Xiong F M, Zhong R C, He L Q, Han Z Q, Jiang J, Liu J, Tang R H. Effect of nitrogen reduced-fertilization on soil diazotrophic diversity in peanut rhizosphere. Jiangsu Agric Sci, 2019, 47(16): 93-97. (in Chinese with English abstract)
[23] Gorbet D W, Burton J C. A non-nodulating peanut. Crop Sci, 1979, 19: 727-728.
doi: 10.2135/cropsci1979.0011183X001900050045x
[24] 石海, 苗淑杰, 刘居东, 周克琴. 施氮对结瘤和非结瘤近等位基因大豆生长和固氮性状的影响. 大豆科学, 2012, 31: 961-965.
Shi H, Miao S J, Liu J D, Zhou K Q. Effect of nitrogen application on growth and nitrogen fixation in nodulation and non-nodulation soybean isolines. Soybean Sci, 2012, 31: 961-965. (in Chinese with English abstract)
[25] Selamat A, Gardner F P. Nitrogen partitioning and redistribution in nonnodulating peanut related to nitrogen stress. Agron J, 1985, 77: 859-862.
doi: 10.2134/agronj1985.00021962007700060009xa
[26] 郑永美, 王春晓, 刘岐茂, 吴正锋, 王才斌, 孙秀山, 郑亚萍. 氮肥对花生根系生长和结瘤能力的调控效应. 核农学报, 2017, 31: 2418-2425.
doi: 10.11869/j.issn.100-8551.2017.12.2418
Zheng Y M, Wang C X, Liu Q M, Wu Z F, Wang C B, Sun X S, Zheng Y P. Effect of nitrogen fertilizer regulation on root growth and nodulating ability of peanut. J Nucl Agric Sci, 2017, 31: 2418-2425. (in Chinese with English abstract)
[27] Wang Q, Wang J, Li Y, Chen D, Ao J, Zhou W, Shen D, Li Q, Huang Z, Jiang Y. Influence of nitrogen and phosphorus additions on N2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation. Sci Total Environ, 2017, 619: 1530-1537.
[28] 徐鹏霞, 韩丽丽, 贺纪正, 罗锋, 张丽梅. 非共生生物固氮微生物分子生态学研究进展. 应用生态学报, 2017, 28: 3440-3450.
Xu P X, Han L L, He J Z, Luo F, Zhang L M. Research advance on molecular ecology of asymbiotic nitrogen fixation microbes. Chin J Appl Ecol, 2017, 28: 3440-3450. (in Chinese with English abstract)
[29] Reinhold-Hurek B, Bünger W, Burbano C S, Sabale M, Hurek T. Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol, 2015, 53: 403-424.
doi: 10.1146/annurev-phyto-082712-102342 pmid: 26243728
[30] Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl, 2010, 20: 30-59.
pmid: 20349829
[31] Liu W, Jiang L, Yang S, Wang Z, Tian R, Peng Z, Chen Y, Zhang X, Kuang J, Ling N. Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment. Ecology, 2020, 101: e03053.
[32] Calderoli P A, Collavino M M, Kraemer F B, Morrás H, Aguilar O M. Analysis of nifH-RNA reveals phylotypes related to Geobacter and Cyanobacteria as important functional components of the N2-fixing community depending on depth and agriculturaluse of soil. Microbiol Open, 2017, 6: e502.
[33] Wang R, Chang Y L, Zheng W T, Zhang D, Zhang X X, Sui X H, Wang E T, Hu J Q, Zhang L Y, Chen W X. Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Sys Appl Microbiol, 2013, 36: 101-105.
doi: 10.1016/j.syapm.2012.10.009
[34] Indrasumunar A, Menzies N W, Dart P J. Laboratory prescreening of Bradyrhizobium japonicum for low pH, Al and Mn tolerance can be used to predict their survival in acid soils. Soil Biol Biochem, 2012, 48: 135-141.
doi: 10.1016/j.soilbio.2012.01.019
[35] Duncan N, Menge L, Levin S, Hedin L. Facultative versus obligate nitrogen fixation strategies and their ecosystem consequences. Am Nat, 2009, 174: 465-477.
doi: 10.1086/605377
[1] ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904.
[2] BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079.
[3] XU Yang, ZHANG Zhi-Meng, DING Hong, QIN Fei-Fei, ZHANG Guan-Chu, DAI Liang-Xiang. Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil [J]. Acta Agronomica Sinica, 2022, 48(8): 2088-2099.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[6] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[7] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[8] HU Mei-Ling, XUE Xiao-Meng, WU Jie, ZHI Chen-Yang, LIU Nian, CHEN Xiao-Ping, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Genetic analysis of embryo, cytoplasm, and maternal effects for fat and sucrose contents in peanut seed [J]. Acta Agronomica Sinica, 2022, 48(11): 2724-2732.
[9] WANG Jian-Guo, GENG Yun, YANG Dian-Qing, GUO Feng, YANG Sha, LI Xin-Guo, TANG Zhao-Hui, ZHANG Jia-Lei, WAN Shu-Bo. Effects of single seed precision sowing on population quality, nutrient utilization of peanut in medium and high yield drylands [J]. Acta Agronomica Sinica, 2022, 48(11): 2866-2878.
[10] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[11] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[12] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[13] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
[14] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[15] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[2] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[3] Huang Ce;Wang Tian-duo. COMPUTER SIMULATION OF BIOMASS PRODUCTION IN RICE COMMUNITY[J]. Acta Agron Sin, 1986, (01): 1 -8 .
[4] CHEN Ji-Bao;JING Rui-Lian;MAO Xin-Guo;CHANG Xiao-Ping;WANG Shu-Min. A Response of PvP5CS2 Gene to Abiotic Stresses in Common Bean[J]. Acta Agron Sin, 2008, 34(07): 1121 -1127 .
[5] ZHANG Wen-Jing;HU Hong-Biao;CHEN Bing-Lin;WANG You-Hua;ZHOU Zhi-Guo. Difference of Physiological Characteristics of Cotton Bolls in Development of Fiber Thickening and Its Relationship with Fiber Strength[J]. Acta Agron Sin, 2008, 34(05): 859 -869 .
[6] WANG Cai-Bin;WU Zheng-Feng;CHENG Bo;ZHENG Ya-Ping;WAN Shu-Bo;GUO Feng;Chen Dian-Xu. Effect of Continuous Cropping on Photosynthesis and Metabolism of Reactive Oxygen in Peanut[J]. Acta Agron Sin, 2007, 33(08): 1304 -1309 .
[7]

CHANG Li-Ying;GU Dong-Xiang;ZHANG Wen-Yu;YANG Jie;CAO Wei-Xing;ZHU Yan

. A Simulation Model of Leaf Elongation Process in Rice[J]. Acta Agron Sin, 2008, 34(02): 311 -317 .
[8] QU Ying;LIU Su-Hong;XIE Yun. Computer Simulation Model of the Fractional Vegetation Cover and Its Parameters Sensitivity Analysis[J]. Acta Agron Sin, 2008, 34(11): 1964 -1969 .
[9] Han Xiangling;Liu Xunhao;Kong Yangzhong. STUDIES ON THE PRODUCTIVITY OF SINGLE AND DOUBLE CROPPING IN HUANG-HUAI-HAI PLAIN[J]. Acta Agron Sin, 1986, 12(02): 109 -116 .
[10] Zhai Huqu;Cao Shuqing;Tang Yunlai;Zhang Rongxian;Sheng Shenglan;Gong Hongbing;Yang Tunan. Analysis on Combining Ability and Heritability of Photosynthetic Characters in Indica Hybrid Rice[J]. Acta Agron Sin, 2002, 28(02): 154 -160 .