Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (11): 2934-2944.doi: 10.3724/SP.J.1006.2022.14243

• RESEARCH NOTES • Previous Articles     Next Articles

Interactions between CMLs and NPG1 and related proteins in pollen germination of Brassica oleracea L. var. capitata

XU Bin1,2(), CAO Shao-Yu1,2(), SU Tian1, PENG Meng-Ling1,2, LYU Xia1, LI Zhen-Lin1, ZHANG Guo-Ping1, XU Jun-Qiang1,*()   

  1. 1Dian-Tai Engineering Research Center for Characteristic Agriculture Industrialization of Yunnan Province, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, Yunnan, China
  • Received:2021-12-22 Accepted:2022-03-25 Online:2022-11-12 Published:2022-04-20
  • Contact: XU Jun-Qiang E-mail:1650379536@qq.com;1194642629@qq.com;xujunqiang101@163.com
  • Supported by:
    The Major Projects of Yunnan Science and Technology Plan(202102AE09005);The Science and Technology Talents and Platform Plan of Yunnan Province(202205AF150017);The Science and Technology Talents and Platform Plan of Yunnan Province(202005AF150035);The Science and Technology Talents and Platform Plan of Yunnan Province(2019IC009);The National Natural Science Foundation of China(31560560);The Science and Technology Plan Project of Kunming(2019-1-H-24615)

Abstract:

As one of calmodulin families, calmodulin-like (CMLs) regulate plant growth and development, hormone regulation, stresses, which have great significance to the further study of calmodulin-like protein involved in pollen germination and growth. In this study, to explore the interaction between CMLs and NPG1 related genes in pollen development of Brassica oleracea L. var. capitata, and to explore the function of CMLs in pollen development and germination, 12 CMLs genes related to pollen development and germination, and pollen germination genes NPG1, NPGR1, and NPGR2 were cloned from “ZG”. Interactions between them were detected by yeast two-hybrid test. and the relative expression levels of NPG1, NPGR1, and NPGR2 after different pollination time was detected. The results showed that the open reading frames (ORFs) of 12 CMLs genes ranged from 447 bp to 1095 bp, among which CML20, CML48, CML49, and CML50 contained 4 introns, CML21 contained 2 introns, and the others contained no introns. All of them contained no signal peptide and transmembrane domain, all of them were extracellular proteins and hydrophilic proteins which contain 2-4 EF-hands, with amino acids range of 148-364 aa. Subcellular localization was mainly located in cell membrane, vacuole, and nucleus. NPG1, NPGR1, and NPGR2 were clustered on different evolutionary branches, which were the closest to Brassica rape and Brassica napus, and closer to Arabidopsis thaliana. Yeast two-hybrid showed that CML13, CML21, CML24, CML42 could not interact with NPG1, NPGR1, and NPGR2 in vitro, CML15, CML20, CML25, CML39, CML41, CML48, and CML49 could interact with NPG1, NPGR1, and NPGR2, CML50 could interact with NPGR1 and NPGR2, but not with NPG1. The relative expression level of NPG1 increased significantly after pollination, while the relative expression levels of NPGR1 and NPGR2 didn’t change significantly. The relative expression levels of CMLs genes were varied at different pollination times, and CML15, CML20, CML39, CML41, and CML49 were a trend of first increasing and then decreasing. In conclusion, several CMLs proteins were screened which can interact with NPG1 and NPGRs, indicating that CMLs can participate in the process of pollen germination and pollen tube elongation, and it was expected to provide references for the research on the mechanism of Ca2+ signaling system participating in pollen germination and pollen tube elongation.

Key words: Brassica oleracea L. var. capitata, pollen, calmodulin-like protein (CMLs), NPG1, NPGRs, protein interaction

Table 1

Primers used in this study"

基因 Gene name 正向引物 Forward primer (5°-3°) 反向引物 Reverse primer (5°-3°)
CML13 GAGCGAAATCCGACCCGGCTT CTACTTAGCAACCATCCTGGCA
CML15 CTCTCATCTGTGTTTTGAGG TCATGAATTAATTTTTAAACCA
CML20 CGAGAAATCGACGCGGAAAGAGCT ATAACAGAGACCTCATCAGTACC
CML21 CGATCTGATCTCAAAGCAGGA CACAAACATCAAGCCTTGTCA
CML24 CATCGTCTTCTTCTCCACCACA CCTAAAATACGATCATCAAGC
CML25 GATCCAGAGATTCATTCGCTTCCTT GTGAAACTCTACCACTGACCAC
CML39 CATCATGAAGAACACTCAACGT CAACATTGGATGGGCTGATGCCTTA
CML41 CCAATATGGCAACTCCCCAAG CTTCATAAGCATTTCGAGCAA
CML42 GTCAAGGAAGAGGATAAATGG TGAAGTCAAGAAGGGATAACG
CML48 CTTGATGATGGGACTGGCAACACTG CATATGAGGCAATGAACGGAATGAC
CML49 ATGTCTGGTTACCCTCCTTCGAGC TTAAGCGACGAGGAACGGTAGAAC
CML50 TTCCCAGCGATGTCAGGTTACC GTTGTTGTTGTATGTTCGTCG
NPG1 GGCTCTGCATGAAAACAACTGA TTAAAGAATGGTTGAGAAGCT
NPGR1 ATGTTGTGTGCTTGTTCAGGCG TCAAATGAAACTCTGCACCGG
NPGR2 ATGAGGAACAGCGAGACTAGGC TCATCTGAATGGCTCCACTGGC
qCML15 CTCGGTCTCAAACCATCAGGAGA GTTACCGATCTCTTCGTTCAGG
qCML20 ATGTCGAGTCTATACAGAGGTG TGCTCTTCCGTCATCTCGAAACC
qCML25 GTTCGGCGTCTAGAACCGGAGCA TGGAACCTCGTGGCCTAGACTTG
qCML39 TCAAGACACTGGGAGAGCAA CAAAATCCAGCATCCCATCT
qCML41 GTCACCACTCCCATGACGAGCT TGCCTCGTGAGTTATATACTCAC
qCML48 TCAGCTTGATGATGGGACTG TAACCGGGGTCCTTCTCTTT
qCML49 GGAGACCACAAGCCGCACAAA CGCCTGGAAGCAAGTCACGAT
qCML50 ACCAACGCCATGAAGATAGG CATCTATTCTCCCGCTCCTG
qNPG1 TAGTCAGACCTCGGTGCTC GCTCCTCGCTGCAAACCTTA
qNPGR1 CGAATCAAGACAGATACCG CATAGCATACGCCAAGGAA
qNPGR2 AACTACGAGGAGGCGAGGGC GAGGCTGAGGAGGAGCAACA
β-Actin TATCAACTACCAGCCACC GAACACCTCAGCTACACTC

Fig. 1

Cloning of CMLs genes in Brassica oleracea L. var. capitata M: Trans2K plus II DNA marker; 1-12 represent the cloning of CML13, CML15, CML20, CML21, CML24, CML25, CML39, CML41, CML42,CML48, CML49, and CML50, respectively."

Table 2

Basic information of CMLs genes of Brassica oleracea L. var. capitata"

基因
Gene name
编码区
Coding
region (bp)
内含子
Introns
跨膜域
Transmembrane
信号肽
Signal peptide
预测的蛋白 Predicted protein 疏水性
Hydrophobicity
亚细胞定位
Subcellular
localization
EF-
hand
氨基酸
Amino acid (aa)
分子量
Molecular weight (kD)
pI
CML13 447 0 无No 无No 3 148 16.40 4.62 亲水
Hydrophilic
细胞膜
Cell membrane
CML15 471 0 无No 无No 4 156 16.99 3.94 亲水
Hydrophilic
液泡
Vacuole
CML20 510 4 无No 无No 4 169 19.60 4.55 亲水
Hydrophilic
细胞膜
Cell membrane
CML21 678 2 无No 无No 4 225 25.96 4.17 亲水
Hydrophilic
细胞膜
Cell membrane
CML24 447 0 无No 无No 4 158 17.40 4.64 亲水
Hydrophilic
细胞膜, 液泡
Cell membrane, vacuole
CML25 552 0 无No 无No 4 183 20.14 4.42 亲水
Hydrophilic
液泡
Vacuole
CML39 510 0 无No 无No 4 169 19.25 4.35 亲水
Hydrophilic
液泡
Vacuole
CML41 612 0 无No 无No 4 203 22.64 4.97 亲水
Hydrophilic
细胞膜
Cell membrane
CML42 567 0 无No 无No 3 188 20.70 4.25 亲水
Hydrophilic
细胞膜, 液泡
Cell membrane, vacuole
CML48 672 4 无No 无No 2 223 25.28 4.53 亲水
Hydrophilic
细胞核
Nucleus
CML49 954 4 无No 无No 2 317 33.51 6.93 亲水
Hydrophilic
细胞核
Nucleus
CML50 1095 4 无No 无No 2 364 38.06 6.27 亲水
Hydrophilic
细胞膜, 细胞核
Cell membrane, nucleus

Fig. 2

Phylogenetic tree and gene structure of CMLs in Brassica oleracea L. var. capitata The phylogenetic tree is constructed on the left, and the gene structure map of the CMLs on the right."

Table 3

Basic information of NPG1, NPGR1, and NPGR2 of Brassica oleracea L. var. capitata"

基因
Gene
编码区
Coding region
(bp)
内含子
Introns
跨膜域
Transmembrane
信号肽
Signal peptide
预测的蛋白 Predicted proteins 疏水性
Hydrophobicity
亚细胞定位
Subcellular
localization
TPR 氨基酸
Amino
acid (aa)
分子量Molecular
weight (kD)
pI
NPG1 2043 4 无No 无No 3 680 75.31 5.98 亲水Hydrophilic 细胞核Nucleus
NPGR1 2109 2 无No 无No 3 702 77.65 6.27 亲水Hydrophilic 细胞核Nucleus
NPGR2 2224 3 无No 无No 7 737 82.44 7.58 亲水Hydrophilic 细胞核Nucleus

Fig. 3

Amplification and sequence analysis of NPG1, NPGR1, and NPGR2 genes in Brassica oleracea L. var. capitata M: Trans2K plus II DNA marker; A: amplification of NPG1, NPGR1 and NPGR2 genes from cDNA; B: amplification of NPG1, NPGR1, and NPGR2 genes from gDNA; C: analysis of TPRs domain of NPG1, NPGR1 and NPGR2 proteins in Brassica oleracea and Arabidopsis thaliana; D: sequence comparison of NPG1-TPR1 domain between Brassica oleracea, and Arabidopsis thaliana."

Fig. 4

Phylogenetic analysis of NPG1, NPGR1, and NPGR2 proteins in Brassica oleracea L. var. capitata"

Fig. 5

Autoactivation assay of the yeast strain by recombinant on SD/-Leu/-Trp/X-α-gal/AbA plates"

Table 4

Interaction of CMLs and NPG1, NPGR1, NPGR2 in Brassica oleracea L. var. capitata"

AD\BK CML13 CML15 CML20 CML21 CML24 CML25 CML39 CML41 CML42 CML48 CML49 CML50
NPG1 + + + + + + +
NPGR1 + + + + + + + +
NPGR2 + + + + + + + +

Fig. 6

Interactions between CMLs and NPG1, NPGR1, NPGR2 in Brassica oleracea L. var. capitata P: positive control; N: negative control; 1: NPG1×CML13; 2: NPGR1×CML13; 3: NPGR2×CML13; 4: NPG1×CML15; 5: NPGR1×CML15; 6: NPGR2×CML15; 7: NPG1×CML20; 8: NPGR1×CML20; 9: NPGR2×CML20; 10: NPG1×CML21; 11: NPGR1×CML21; 12: NPGR2× CML21; 13: NPG1×CML24; 14: NPGR1×CML24; 15: NPGR2×CML24; 16: NPG1×CML25; 17: NPGR1×CML25; 18: NPGR2×CML25; 19: NPG1×CML39; 20: NPGR1×CML39; 21: NPGR2×CML39; 22: NPG1×CML41; 23: NPGR1×CML41; 24: NPGR2×CML41; 25: NPG1× CML42; 26: NPGR1 CML42; 27: NPGR2×CML42; 28: NPG1×CML48; 29: NPGR1×CML48; 30: NPGR2×CML48; 31: NPG1×CML49; 32: NPGR1×CML49; 33: NPGR2×CML49; 34: NPG1×CML50; 35: NPGR1×CML50; 36: NPGR2×CML50."

Table 5

Interaction strength of CMLs and NPG1, NPGR1, NPGR2 in Brassica oleracea L. var. capitata"

AD\BK β-半乳糖酶活性 β-galactosidase activity (Miller units)
CML15 CML20 CML25 CML39 CML41 CML48 CML49 CML50
NPG1 5.37 5.85 5.61 5.71 7.77 8.31 6.68
NPGR1 4.58 2.31 4.16 3.97 5.31 7.17 2.69 3.65
NPGR2 4.50 4.96 4.82 4.51 6.58 7.70 4.47 5.90

Fig. 7

Relative expression levels of CMLs (A), and NPG1, NPGR1, and NPGR2 (B) at different pollination times of Brassica oleracea L. var. capitata Different lowercase letter above the bar indicates significant difference at P < 0.05."

[1] Batistic O, Kudla J. Analysis of calcium signaling pathways in plants. Biochim Biophys Acta, 2012, 1820: 1283-1293.
[2] Leba L J, Cheval C, Ortiz-Martín I, Ranty B, Beuzón C R, Galaud J P, Aldon D. CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin- dependent signalling pathway. Plant J, 2012, 71: 976-989.
doi: 10.1111/j.1365-313X.2012.05045.x
[3] Cheval C, Aldon D, Galaud J P, Ranty B. Calcium/ calmodulin-mediated regulation of plant immunity. Biochim Biophys Acta, 2013, 1833: 1766-1771.
[4] Schulz P, Romeis H T. Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiol, 2013, 163: 523-530.
doi: 10.1104/pp.113.222539
[5] 刘辉, 邓治, 陈江淑, 李德军. 巴西橡胶树类钙调素蛋白基因HbCML27克隆与表达分析. 分子植物育种, 2015, 13: 2721-2727.
Liu H, Deng Z, Chen J S, Li D J.Cloning and expression analysis of calmodulin-like protein gene HbCML27 from Hevea brasiliensis. Mol Plant Breed, 2015, 13: 2721-2727. (in Chinese with English abstract)
[6] Boonburapong B, Buaboocha T. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol, 2007, 7: 4.
pmid: 17263873
[7] Mccormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol, 2010, 159: 585-598.
[8] Bouché N, Yellin A, Snedden W A, Fromm H. Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol, 2005, 56: 435-466.
doi: 10.1146/annurev.arplant.56.032604.144224
[9] McCormack E, Tsai Y C, Braam J. Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci, 2005, 10: 383-389.
doi: 10.1016/j.tplants.2005.07.001
[10] Nie S S, Zhang M J, Zhang L G. Genome-wide identification and expression analysis of calmodulin-like (CML) genes in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genomics, 2017, 18: 842.
doi: 10.1186/s12864-017-4240-2
[11] 蒲敏, 罗绍兰, 廉小平, 曾静, 张贺翠, 刘倩莹, 左同鸿, 朱利泉. 结球甘蓝CML家族基因及其在授粉后柱头中的表达. 园艺学报, 2018, 45: 2129-2140.
Pu M, Luo S L, Lian X P, Zeng J, Zhang H C, Liu Q Y, Zuo T H, Zhu L Q. Study on CML family genes and expressions in stigma after pollination. Acta Hortic Sin, 2018, 45: 2129-2140. (in Chinese with English abstract)
[12] Wang S S, Diao W Z, Yang X, Qiao Z, Wang M, Acharya B R, Zhang W. Arabidopsis thaliana CML25mediates the Ca2+ regulation of K+ transmembrane trafficking during pollen germination and tube elongation. Plant Cell Environ, 2015, 38: 2372-2386.
doi: 10.1111/pce.12559
[13] 于晓俊, 曹绍玉, 董玉梅, 毕保良, 张应华, 许俊强. 钙结合蛋白对花粉生长发育调控研究进展. 西北植物学报, 2016, 36: 2121-2127.
Yu X J, Cao S Y, Dong Y M, Bi B L, Zhang Y H, Xu J Q. Research progress of calcium binding proteins in pollen growth and development. Acta Bot Boreali-Occident Sin, 2016, 36: 2121-2127. (in Chinese with English abstract)
[14] 曹绍玉, 王艳芳, 苏婉玉, 张琳, 张应华, 许俊强. 类钙调蛋白在植物生长发育及逆境胁迫中的功能研究进展. 植物生理学报, 2018, 54: 1517-1526.
Cao S Y, Wang Y F, Su W Y, Zhang L, Zhang Y H, Xu J Q. Research progress on functions of calmodulin-like proteins in processes of plant growth and developments and stresses. Plant Physiol J, 2018, 54: 1517-1526. (in Chinese with English abstract)
[15] Ma W, Smigel A, Tsai Y C, Braam J, Berkowitz G A. Innate immunity signaling: cytosolic Ca2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein. Plant Physiol, 2008, 148: 818-828.
doi: 10.1104/pp.108.125104
[16] Yang X, Wang S S, Wang M, Qiao Z, Bao C C, Zhang W. Arabidopsis thaliana calmodulin-like protein CML24 regulates pollen tube growth by modulating the actin cytoskeleton and controlling the cytosolic Ca2+ concentration. Plant Mol Biol, 2014, 86: 225-236.
doi: 10.1007/s11103-014-0220-y pmid: 25139229
[17] Zhou L, Fu Y, Yang Z. A genome-wide functional characterization of Arabidopsis regulatory calcium sensors in pollen tubes. J Integr Plant Biol, 2009, 51: 751-761.
doi: 10.1111/j.1744-7909.2009.00847.x
[18] Wang Y, Zhang W Z, Song L F, Zou J J, Su Z, Wu W H. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol, 2008, 148: 1201-1211.
doi: 10.1104/pp.108.126375
[19] 宋明, 许俊强, 孙梓健, 汤青林, 王志敏, 王小佳. 结球甘蓝花粉类钙调素蛋白基因BoCML49的克隆及表达分析. 作物学报, 2012, 38: 2162-2169.
doi: 10.3724/SP.J.1006.2012.02162
Song M, Xu J Q, Sun Z J, Tang Q L, Wang Z M, Wang X J. Molecular cloning and expression analysis of CaM-Like protein genes (BoCML49) from cabbage (Brassica oleracea L. var. capitata). Acta Agron Sin, 2012, 38: 2162-2169. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.02162
[20] 许俊强. 甘蓝花粉管钙感受蛋白编码基因CML49的克隆及功能鉴定研究. 西南大学博士学位论文, 重庆, 2014.
Xu J Q. Study of Cloning andIdentification of Calcium Sensor Protein-coding Gene CML49 of Pollen Tube in Brassica oleracea L. PhD Dissertation of Southwest University, Chongqing, China, 2014. (in Chinese with English abstract)
[21] Golovkin M, Reddy A S. A calmodulin-binding protein from Arabidopsis has an essential role in pollen germination. Proc Natl Acad Sci USA, 2003, 100: 10558-10563.
doi: 10.1073/pnas.1734110100
[22] Schiott M, Romanowsky S M, Baekgaard L, Jakobsen M K, Palmgren M G, Harper J F. A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci USA, 2004, 101: 9502-9507.
doi: 10.1073/pnas.0401542101
[23] 苏贺楠, 韩风庆, 杨丽梅, 庄木, 张扬勇, 王勇, 李占省, 方智远, 吕红豪. 结球甘蓝小孢子培养条件优化及高代自交系胚状体诱导研究. 中国蔬菜, 2018, (4): 30-36.
Su H N, Han F Q, Yang L M, Zhuang M, Zhang Y Y, Wang Y, Li Z S, Fang Z Y, Lyu H H. Studies on optimization of cabbage isolated microspore culture conditions andgeneration of embryoids from high-generation inbred lines. China Veget, 2018, (4): 30-36. (in Chinese with English abstract)
[24] 邢苗苗, 刘星, 孔枞枞, 杨丽梅, 庄木, 张扬勇, 王勇, 吕红豪. 甘蓝NLR家族全基因组鉴定、进化分析及在不同病害胁迫下的表达分析. 园艺学报, 2019, 46: 723-737.
Xing M M, Liu X, Kong C C, Zhang Y M, Zhuang M, Yang L M, Wang Y, Lyu H H. Whole-genome identification and evolutionary analysis of cabbage NLR family genes and their expression profiles in response to various disease stress. Acta Hortic Sin, 2019, 46: 723-737. (in Chinese with English abstract)
[25] 赵云霞, 魏艳玲, 黄先忠. 新疆无苞芥类钙调素蛋白基因OpCML13的克隆与分析. 西北植物学报, 2014, 34: 431-437.
Zhao Y X, Wei Y L, Huang X Z. Clone and expres-sion analysis of calmulin-like protein gene OpCMLl3 from Olimarabidopsis pumila of Xinjiang. Acta Bot Boreali-Occident Sin, 2014, 34: 431-437. (in Chinese with English abstract)
[26] Lin W D, Liao Y Y, Yang T J, Pan C Y, Buckhout T J, Schmidt W. Coexpression-based clustering of Arabidopsis root genes predicts functionalmodules in early phosphate deficiency signaling. Plant Physiol, 2011, 155: 1383-1402.
doi: 10.1104/pp.110.166520
[27] Yang X, Wang S S, Wang M, Qiao Z, Bao C C, Zhang W. Arabidopsis thaliana calmodulin-like protein CML24regulates pollen tube growthby modulating the actin cytoskeleton and controlling the cytosolic Ca2+ concentration. Plant Mol Biol, 2014, 86: 225-236.
doi: 10.1007/s11103-014-0220-y pmid: 25139229
[28] Shin S B, Golovkin M, Reddy A S. A pollen-specific calmodulin-binding protein, NPG1, interacts with putative pectate lyases. Sci Rep, 2014, 4: 5263.
doi: 10.1038/srep05263
[1] LIU Shu-Xian, YANG Zong-Tao, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng . Interaction of sugarcane main facilitator superfamily member ScZIFL1 with 6K2 in response to Sugarcane mosaic virus infection [J]. Acta Agronomica Sinica, 2022, 48(12): 3080-3090.
[2] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[3] WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868.
[4] LI Lan-Lan, MU Dan, YAN Xue, YANG Lu-Ke, LIN Wen-Xiong, FANG Chang-Xun. Effect of OsPAL2;3 in regulation of rice allopathic inhibition on barnyardgrass (Echinochloa crusgalli L.) [J]. Acta Agronomica Sinica, 2021, 47(2): 197-209.
[5] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[6] GAO Yun, ZHANG Yu-Xue, MA Quan, SU Sheng-Nan, LI Chun-Yan, DING Jin-Feng, ZHU Min, ZHU Xin-Kai, GUO Wen-Shan. Effects of low temperature in spring on fertility of pollen and formation of grain number in wheat [J]. Acta Agronomica Sinica, 2021, 47(1): 104-115.
[7] CHEN Miao, XIE Sai, WANG Chao-Zhi, LI Yan-Long, ZHANG Xian-Long, MIN Ling. Mechanism of GhPIF4 regulating anther abortion under high temperature stress in cotton [J]. Acta Agronomica Sinica, 2020, 46(9): 1368-1379.
[8] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[9] LEI Jian-Feng,LI Yue,XU Xin-Xia,AERZUGULI?Tashi,PU Yan,ZHANG Ju-Song,LIU Xiao-Dong. Cloning and Functional Analysis of Different TruncatedGbU6Promoters in Cotton [J]. Acta Agron Sin, 2016, 42(05): 675-683.
[10] YANG Sha,LI Yan,GUO Feng,ZHANG Jia-Lei,MENG Jing-Jing,LI Meng,WAN Shu-Bo,LI Xin-Guo. Screening of AhCaM-Interactive Proteins in Peanuts Using Yeast Two Hybrid System [J]. Acta Agron Sin, 2015, 41(07): 1056-1063.
[11] LIU Rong-Bang,CHEN Ming,GUO Meng-Meng,SI Qing-Lin,GAO Shi-Qing,XU Zhao-Shi,LI Lian-Cheng,MA You-Zhi,YIN Jun. Characterization and Functional Analysis of a Small GTP-binding Protein AtRAB Interacting with H+-Pyrophosphatase AVP1 in Arabidopsis thaliana [J]. Acta Agron Sin, 2014, 40(10): 1756-1766.
[12] ZHANG Hong-Gen**,SUN Yi-Biao**,FENG Zhi-Qiang,QIAN Kai,PEI Yan,LI Chuang,TANG Shu-Zhu*,LIANG Guo-Hua,GU Ming-Hong. Mapping of a Gene Causing Hybrid Pollen Sterility between Yujing 6B and TR2604 [J]. Acta Agron Sin, 2014, 40(08): 1380-1385.
[13] ZHANG Zu-Jian,WANG Qing-Qing,LANG You-Zhong,WANG Chun-Ge,ZHU Qing-Sen,YANG Jian-Chang. Effects of High Temperature Stress at Heading Stage on Pollination and Fertilization of Different Types of Rice Variety [J]. Acta Agron Sin, 2014, 40(02): 273-282.
[14] LIAO Fang-Lei,WANG Lu,XIN Ke-Xing,CHEN Wen-Rong,GUO Wei-Dong. Comparison and Analysis of Effects of Antisense Oligodeoxynucleotide Inhibition of NtGNL1 in Three Culture Systems of Tobacco [J]. Acta Agron Sin, 2014, 40(02): 355-361.
[15] ZHANG Xiao-Hong,XU Peng-Bo,GUO Meng-Meng,XU Zhao-Shi,LI Lian-Cheng,CHEN Ming,MA You-Zhi. Characteristic and Function Analysis of a Copper Ion Binding Protein, AtBCB Interacting with G Protein α Subunit GPA1 in Arabidopsis thaliana [J]. Acta Agron Sin, 2013, 39(11): 1952-1961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[2] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[3] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[4] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[5] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[6] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .
[7] Huang Ce;Wang Tian-duo. COMPUTER SIMULATION OF BIOMASS PRODUCTION IN RICE COMMUNITY[J]. Acta Agron Sin, 1986, (01): 1 -8 .
[8] ZHANG Wen-Jing;HU Hong-Biao;CHEN Bing-Lin;WANG You-Hua;ZHOU Zhi-Guo. Difference of Physiological Characteristics of Cotton Bolls in Development of Fiber Thickening and Its Relationship with Fiber Strength[J]. Acta Agron Sin, 2008, 34(05): 859 -869 .
[9] ZHANG Peng; ZHANG Hai-Yang ; ; GUO Wang-Zhen; ZHENG Yong-Zhan; WEI Li-Bin; ZHANG Tian-Zhen. Genetic Diversity Analysis of Sesamum indicum L. Germplasms Using SRAP and EST-SSR Markers[J]. Acta Agron Sin, 2007, 33(10): 1696 -1702 .
[10] WANG Cai-Bin;WU Zheng-Feng;CHENG Bo;ZHENG Ya-Ping;WAN Shu-Bo;GUO Feng;Chen Dian-Xu. Effect of Continuous Cropping on Photosynthesis and Metabolism of Reactive Oxygen in Peanut[J]. Acta Agron Sin, 2007, 33(08): 1304 -1309 .