Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (1): 24-35.doi: 10.3724/SP.J.1006.2023.14233
• CROP GENETICS & BREEDING ·GERMPLASM RESOURCES ·MOLECULAR GENETICS • Previous Articles Next Articles
LIANG Zheng1,3(), KE Mei-Yu1,3, CHEN Zhi-Wei2, CHEN Xu3,*(), GAO Zhen3,*()
[1] |
Peer W A, Blakeslee J J, Yang H, Murphy A S. Seven things we think we know about auxin transport. Mol Plant, 2011, 4: 487-504.
doi: 10.1093/mp/ssr034 pmid: 21505044 |
[2] |
Friml J, Palme K. Polar auxin transport—old questions and new concepts? Plant Mol Biol, 2002, 49: 273-284.
doi: 10.1023/A:1015248926412 |
[3] |
Ljung K, Ostin A, Lioussanne L, Sandberg G. Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings. Plant Physiol, 2001, 125: 464-475.
pmid: 11154354 |
[4] |
Balzan S, Johal G S, Carraro N. The role of auxin transporters in monocots development. Front Plant Sci, 2014, 5: 393.
doi: 10.3389/fpls.2014.00393 pmid: 25177324 |
[5] |
Krecek P, Skupa P, Libus J, Naramoto S, Tejos R, Friml J, Zazímalová E. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol, 2009, 10: 249.
doi: 10.1186/gb-2009-10-12-249 pmid: 20053306 |
[6] |
Bohn-Courseau I. Auxin: a major regulator of organogenesis. C R Biol, 2010, 333: 290-296.
doi: 10.1016/j.crvi.2010.01.004 |
[7] |
Saini S, Sharma I, Kaur N, Pati P K. Auxin: a master regulator in plant root development. Plant Cell Rep, 2013, 32: 741-757.
doi: 10.1007/s00299-013-1430-5 pmid: 23553556 |
[8] | Overvoorde P, Fukaki H, Beeckman T. Auxin control of root development. Cold Spring Harb Perspect Biol, 2010, 2: a001537. |
[9] |
Olatunji D, Geelen D, Verstraeten I. Control of endogenous auxin levels in plant root development. Int J Mol Sci, 2017, 18: 2587.
doi: 10.3390/ijms18122587 |
[10] |
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 2005, 433: 39-44.
doi: 10.1038/nature03184 |
[11] |
Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 2003, 115: 591-602.
pmid: 14651850 |
[12] |
Wang H Z, Yang K Z, Zou J J, Zhu L L, Xie Z D, Morita M T, Tasaka M, Friml J, Grotewold E, Beeckman T, Vanneste S, Sack F, Le J. Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nat Commun, 2015, 6: 8822.
doi: 10.1038/ncomms9822 |
[13] |
Gao Z, Chen Z, Cui Y, Ke M, Xu H, Xu Q, Chen J, Li Y, Huang L, Zhao H, Huang D, Mai S, Xu T, Liu X, Li S, Guan Y, Yang W, Friml J, Petrášek J, Zhang J, Chen X. GmPIN-dependent polar auxin transport is involved in soybean nodule development. Plant Cell, 2021, 33: 2981-3003.
doi: 10.1093/plcell/koab183 |
[14] |
Sańko-Sawczenko I, Łotocka B, Czarnocka W. Expression analysis of PIN genes in root tips and nodules of Medicago truncatula. Int J Mol Sci, 2016, 17: 1197.
doi: 10.3390/ijms17081197 |
[15] |
Kohlen W, Ng J L P, Deinum E E, Mathesius U. Auxin transport, metabolism, and signaling during nodule initiation: indeterminate and determinate nodules. J Exp Bot, 2018, 69: 229-244.
doi: 10.1093/jxb/erx308 |
[16] |
Plet J, Wasson A, Ariel F, Le Signor C, Baker D, Mathesius U, Crespi M, Frugier F. MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J, 2011, 65: 622-633.
doi: 10.1111/j.1365-313X.2010.04447.x |
[17] |
Huo X, Schnabel E, Hughes K, Frugoli J. RNAi phenotypes and the localization of a protein::GUS fusion imply a role for Medicago truncatula PIN genes in nodulation. J Plant Growth Regul, 2006, 25: 156-165.
doi: 10.1007/s00344-005-0106-y |
[18] |
Sańko-Sawczenko I, Dmitruk D, Łotocka B, Różańska E, Czarnocka W. Expression analysis of PIN genes in root tips and nodules of Lotus japonicus. Int J Mol Sci, 2019, 20: 235.
doi: 10.3390/ijms20020235 |
[19] |
Xu M, Zhu L, Shou H, Wu P. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol, 2005, 46: 1674-1681.
doi: 10.1093/pcp/pci183 |
[20] |
Li Y, Zhu J, Wu L, Shao Y, Wu Y, Mao C. Functional divergence of PIN1 paralogous genes in rice. Plant Cell Physiol, 2019, 60: 2720-2732.
doi: 10.1093/pcp/pcz159 |
[21] |
Li Z, Zhang X, Zhao Y, Li Y, Zhang G, Peng Z, Zhang J. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnol J, 2018, 16: 86-99.
doi: 10.1111/pbi.12751 pmid: 28499064 |
[22] | 郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007, 29: 1023-1026. |
Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas, 2007, 29: 1023-1026. (in Chinese with English abstract) | |
[23] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[24] |
Xie X, Ma X, Zhu Q, Zeng D, Li G, Liu Y G. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol Plant, 2017, 10: 1246-1249.
doi: 10.1016/j.molp.2017.06.004 |
[25] |
Bai M, Yuan J, Kuang H, Gong P, Li S, Zhang Z, Liu B, Sun J, Yang M, Yang L, Wang D, Song S, Guan Y. Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean. Plant Biotechnol J, 2020, 18: 721-731.
doi: 10.1111/pbi.13239 |
[26] |
Luschnig C, Gaxiola R A, Grisafi P, Fink G R. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev, 1998, 12: 2175-2187.
doi: 10.1101/gad.12.14.2175 |
[27] |
Motte H, Vanneste S, Beeckman T. Molecular and environmental regulation of root development. Annu Rev Plant Biol, 2019, 70: 465-488.
doi: 10.1146/annurev-arplant-050718-100423 pmid: 30822115 |
[28] |
Raven J A, Edwards D. Roots: evolutionary origins and biogeochemical significance. J Exp Bot, 2001, 52: 381-401.
pmid: 11326045 |
[29] | Pires N D, Dolan L. Morphological evolution in land plants: new designs with old genes. Philosoph Trans RSB, 2012, 367: 508-518. |
[30] |
Dubrovsky J G, Sauer M, Napsucialy-Mendivil S, Ivanchenko M G, Friml J, Shishkova S, Celenza J, Benková E. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA, 2008, 105: 8790-8794.
doi: 10.1073/pnas.0712307105 |
[31] | Krupinski P, Jönsson H. Modeling auxin-regulated development. Cold Spring Harb Perspect Biol, 2010, 2: a001560. |
[32] |
Qin H, He L, Huang R. The coordination of ethylene and other hormones in primary root development. Front Plant Sci, 2019, 10: 874.
doi: 10.3389/fpls.2019.00874 pmid: 31354757 |
[33] |
Du Y, Scheres B. Lateral root formation and the multiple roles of auxin. J Exp Bot, 2018, 69: 155-167.
doi: 10.1093/jxb/erx223 pmid: 28992266 |
[34] |
Retzer K, Weckwerth W. The TOR-auxin connection upstream of root hair growth. Plants, 2021, 10: 150.
doi: 10.3390/plants10010150 |
[35] |
Konstantinova N, Korbei B, Luschnig C. Auxin and root gravitropism: addressing basic cellular processes by exploiting a defined growth response. Int J Mol Sci, 2021, 22: 2749.
doi: 10.3390/ijms22052749 |
[36] |
Ng J L P, Welvaert A, Wen J, Chen R, Mathesius U. The Medicago truncatula PIN2 auxin transporter mediates basipetal auxin transport but is not necessary for nodulation. J Exp Bot, 2020, 71: 1562-1573.
doi: 10.1093/jxb/erz510 |
[37] |
Inahashi H, Shelley I J, Yamauchi T, Nishiuchi S, Takahashi- Nosaka M, Matsunami M, Ogawa A, Noda Y, Inukai Y. OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. Physiol Plant, 2018, 164: 216-225.
doi: 10.1111/ppl.12707 pmid: 29446441 |
[38] |
Chen Y, Fan X, Song W, Zhang Y, Xu G. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J, 2012, 10: 139-149.
doi: 10.1111/j.1467-7652.2011.00637.x |
[39] |
Lin D L, Yao H Y, Jia L H, Tan J F, Xu Z H, Zheng W M, Xue H W. Phospholipase D-derived phosphatidic acid promotes root hair development under phosphorus deficiency by suppressing vacuolar degradation of PIN-FORMED2. New Phytol, 2020, 226: 142-155.
doi: 10.1111/nph.16330 |
[40] | Vega A, Fredes I, O’Brien J, Shen Z, Ötvös K, Abualia R, Benkova E, Briggs S P, Gutiérrez R A. Nitrate triggered phosphoproteome changes and a PIN2 phosphosite modulating root system architecture. EMBO Rep, 2021, 22: e51813. |
[41] |
Chai S, Li E, Zhang Y, Li S. NRT1.1-Mediated nitrate suppression of root coiling relies on PIN2- and AUX1-mediated auxin transport. Front Plant Sci, 2020, 11: 671.
doi: 10.3389/fpls.2020.00671 pmid: 32582237 |
[42] |
Zou N, Li B, Chen H, Su Y, Kronzucker H J, Xiong L, Baluška F, Shi W. GSA-1/ARG1 protects root gravitropism in Arabidopsis under ammonium stress. New Phytol, 2013, 200: 97-111.
doi: 10.1111/nph.12365 pmid: 23782229 |
[1] | ZHANG Jing, WANG Hong-Zhang, REN Hao, YIN Fu-Wei, WU Hong-Yan, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, DAI Ai-Bin, LIU Peng. Relationship between root architecture and root pulling force of summer maize [J]. Acta Agronomica Sinica, 2023, 49(1): 188-199. |
[2] | KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179. |
[3] | LI Xin, WANG Jian, LI Ya-Bing, HAN Ying-Chun, WANG Zhan-Biao, FENG Lu, WANG Guo-Ping, XIONG Shi-Wu, LI Cun-Dong, LI Xiao-Fei. Effects of different intercropping systems on cotton yield, biomass accumulation, and allocation [J]. Acta Agronomica Sinica, 2022, 48(8): 2041-2052. |
[4] | XIE Li-Ming, JIANG Zhong-Yu, LIU Hong-Juan, HAN Jun-Jie, LIU Ben-Kui, WANG Xiao-Lu, SHI Chun-Yu. Suitable soil moisture promotes sugar supply and tuberization in sweet potato at root branching stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2080-2087. |
[5] | KE Dan-Xia, HUO Ya-Ya, LIU Yi, LI Jin-Ying, LIU Xiao-Xue. Functional analysis of GmTGA26 gene under salt stress in soybean [J]. Acta Agronomica Sinica, 2022, 48(7): 1697-1708. |
[6] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[7] | PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209. |
[8] | TIAN Ming-Hui, YANG Shuo, DU Jia-Qi, ZHANG Chen-Xi, HE Tang-Qing, ZHANG Xue-Lin. Effects of arbuscular mycorrhizal fungi on phosphorus and potassium absorption at grain filling stage under different nitrogen fertilizer input in maize [J]. Acta Agronomica Sinica, 2022, 48(12): 3166-3178. |
[9] | CHEN Xiang-Qian, JIANG Qi-Yan, SUN Xian-Jun, NIU Feng-Juan, ZHANG Hui-Yuan, HU Zheng, ZHANG Hui. Construction and application of soybean CRISPR/Cas9 multiplex editing vector [J]. Acta Agronomica Sinica, 2022, 48(11): 2706-2714. |
[10] | QU Meng-Xue, SONG Jie, SUN Jing, HU Dan-Dan, WANG Hong-Zhang, REN Hao, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of cadmium stress on root growth of maize (Zea mays L.) varieties with different cadmium-tolerant at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(11): 2945-2952. |
[11] | GUO Bao-Jian, WANG Shuang, LYU Chao, WANG Fei-Fei, XU Ru-Gen. Regulation of adventitious root development by HvLBD19 gene in barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2022, 48(10): 2435-2442. |
[12] | XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85. |
[13] | LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148. |
[14] | GE Min, WANG Yuan-Cong, NING Li-Hua, HU Meng-Mei, SHI Xi, ZHAO Han. Function analysis of nitrogen-responsive transcription factor ZmNLP5 affecting root growth in maize [J]. Acta Agronomica Sinica, 2021, 47(5): 807-813. |
[15] | WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859. |
|