Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (1): 36-45.doi: 10.3724/SP.J.1006.2023.24006

• CROP GENETICS & BREEDING ·GERMPLASM RESOURCES ·MOLECULAR GENETICS • Previous Articles     Next Articles

Relative expression analysis of StMAPKK4 gene and screening and identification of its interacting proteins in potato (Solanum tuberosum L.)

PU Xue1(), WANG Kai-Tong1, ZHANG Ning1,2,*(), SI Huai-Jun1,2   

  1. 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2022-01-04 Accepted:2022-05-05 Online:2023-01-12 Published:2022-05-23
  • Contact: ZHANG Ning E-mail:824153833@qq.com;ningzh@gsau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31960444);Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University(GSCS-2019-Z03)

Abstract:

MAPKKs, one of the main members of mitogen-activated protein kinase (MAPK) cascade, are located in the middle of the cascade pathway and play a key role in signal transduction. Studies have shown that potato StMAPKK4 gene responds to drought stress. To further explore the biological function of StMAPKK4 gene, bioinformatics analysis was conducted in the study. The results showed that StMAPKK4 was most closely related to Solanum commersonii. It contained the protein kinase domain (PF00069) of the protein kinase family, which located between 64 aa and 302 aa. StMAPKK4 contained multiple hormones (methyl jasmonate, ethylene, and abscisic acid) and stress-related response elements. The qRT-PCR analysis revealed that StMAPKK4 gene expression was the highest in potato stem. The relative expression levels were up-regulated under drought and salt treatments. Subcellular localization indicated that StMAPKK4 was localized on the cell membrane. Furthermore, eight proteins interacting with StMAPKK4 were screened by yeast two-hybrid method, and their interaction was verified by rotation experiment. Blast comparison of the interacting proteins indicated that StMAPKK4 interacted with polyphenol oxidase, phycocyanin, aspartate aminotransferase, osmotin, phosphate transporter, and other proteins. It was preliminarily concluded that StMAPKK4 may be involved in the response mechanism of photosynthesis, a series of abiotic stresses such as low temperature, drought, and salt stresses in plants, and promote the uptake of phosphorus in roots.

Key words: potato, StMAPKK4 gene, bioinformatics, qRT-PCR, subcellular localization, yeast two-hybrid

Table 1

Names and sequences of primers"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
限制性内切酶
Restriction endonuclease
pCEGFP-F acgggggacgagctcggtaccATGGCCTTAGTTCGTGATCGC Kpn I
pCEGFP-F gcccttgctcaccatgtcgacGGTGGATTTCAAATCGATACTCTGT Sal I
pGBKT7-F tcagaggaggacctgCATATGTACAATCCTTCCCCCTTTTAAC Nde I
pGBKT7-R ctagttatgcggccgCTGCAGTCCCAGTTTTTAGCTTGCTT Pst I

Table 2

Names and sequences of primers"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
Ef1a-F CAAGGATGACCCAGCCAAG
Ef1a-R TTCCTTACCTGAACGCCTGT
StMAPKK4-F TCAACTCTACCGCCAACACC
StMAPKK4-R GCACAAGTCCCGACGTATGA

Fig. 1

Phylogenetic tree of StMAPKK4 gene and nine homologous genes from other species"

Fig. 2

Conserved domain of StMAPKK4 protein in potato"

Fig. 3

Phosphorylation site analysis of StMAPKK4 protein in potato"

Table 3

Cis-acting elements in the promoter region of StMAPKK4 gene in potato"

顺式作用件
Cis-acting elements
核心序列
Core sequences
功能注释
Function annotation
数量
Number
CGTCA-motif CGTCA 茉莉酸甲酯响应元件
Cis-acting regulatory element involved in the MeJA-responsiveness
1
TGACG-motif TGACG 茉莉酸甲酯响应元件
Cis-acting regulatory element involved in the MeJA-responsiveness
1
GATA-motif AAGGATAAGG 部分光响应元件
Part of a module for light response
1
TCT-motif TCTTAC 部分光响应元件
Part of a module for light response
1
顺式作用件
Cis-acting elements
核心序列
Core sequences
功能注释
Function annotation
数量
Number
GT1-motif GGTTAAT 参与光反应顺式作用元件
Light responsive element
2
ERE ATTTTAAA 乙烯响应元件
Ethylene responsive element
5
ARE AAACCA 厌氧诱导的顺式调节元件
Cis-acting regulatory element essential for the anaerobic induction
1
ABRE CACGTG ABA响应元件
Cis-acting element involved in the abscisic acid responsiveness
6
AT1-motif AATTATTTTTTATT 部分光响应元件
Part of a module for light response
1
AE-box AGAAACAA 部分光响应元件
Part of a module for light response
3
STRE AGGGG 脱落酸、干旱响应调控元件
Cis-acting and drought element involved in abscisic acid response
2
MYC CATGTG 逆境胁迫相关顺式调控元件
Stress related cis-regulatory elements
6
TATA-box TATATAAA 转录起始位点−30的核心元件
Core promoter element around −30 of transcription start
7
CAAT-box CAAT 启动子增强子区顺式作用元件
Common cis-acting element in promoter and enhancer regions
33
W-box TTGACC 可诱导性抗性基因响应元件
Inducible resistance gene responsive element
1
MYB TAACCA 干旱诱导相关元件
MYB binding site involved in drought-inducibility
13
TATA-box TATA 转录起始位点−30的核心元件
Core promoter element around −30 of transcription start
71
AT-rich sequence TAAAATACT 富含AT的DNA结合蛋白结合位点
AT-rich DNA binding protein binding sites
1
G-box CACGTG 参与光反应的顺式作用元件
Light responsive element
8
Box 4 ATTAAT 参与光反应的保守DNA模块部分
Part of a conserved DNA module involved in light responsiveness
1
I-box GTATAAGGCC 部分光响应元件
Part of a module for light response
1

Fig. 4

Relative expression level of StMAPKK4 genes in potato Different lowercase letters above the bars mean significant difference at P < 0.05."

Fig. 5

Relative expression level of StMAPKK4 genes under drought and salt stresses Different lowercase letters above the bars mean significant difference at P < 0.05."

Fig. 6

Subcellular localization of StMAPKK4 in potato pCEGFP: blank control (pCEGFP empty vector without StMAPKK4 gene); pCEGFP-StMAPKK4: pCEGFP-StMAPKK4 fusion protein; Yellow, orange, red, and blue arrows indicate nucleus, cytoplasm, cell membrane, and chloroplast, respectively."

Fig. 7

Toxicity and self-activated activity detection of yeast two-hybrid bait vector pGBKT7-StMAPKK4"

Table 4

Detailed information of proteins interacting with StMAPKK4"

克隆
No.
基因编号
Gene ID
注释
Gene annotation
基因全长
Full length of genes (bp)
阳性克隆次数
Number of positive clones
1 XM_006347021.2 多酚氧化酶Polyphenol oxidase 2096 13
2 XM_006367901.2 ARF-GTPase活化因子ARF-GTPase activator 753 7
3 XM_006342026.2 藻蓝蛋白Plastocyanin 1483 7
4 XM_006366150.2 天冬氨酸转氨酶Aspartate aminotransferase 1739 5
5 XM_006367956.2 渗透素Osmotin 921 15
6 NM_001287896.1 磷酸盐转运蛋白Phosphate transporter 1567 10
7 XM_006358242.2 水解酶, 水解O-糖基化合物
Hydrolase, hydrolyzing O-glycosyl compounds
3017 6
8 XM_006355206.2 核糖体蛋白S10p/S20e家族蛋白
Ribosomal protein S10p/S20e family protein
676 5

Fig. 8

Yeast two-hybrid validation of StMAPKK4 interacting proteins The sequence numbers above each colony are the numbers of interacting proteins in Table 4."

[1] Eiasu B K, Soundy P, Hammes P S. Response of potato (Solarium tuberosum) tuber yield components to gel-polymer soil amendments and irrigation regimes. New Zealand J Crop Hortic Sci, 2007, 35: 25-31.
doi: 10.1080/01140670709510164
[2] 邓文红, 沈应柏, 陈华君, 李镇宇, 蒋湘宁. 昆虫取食和药剂熏蒸对马尾松针叶脱落酸和茉莉酸含量的影响. 应用生态学报, 2009, 20: 1166-1170.
Deng W H, Shen Y B, Chen H J, Li Z Y, Jiang X N. Effects of insect feeding and fumigation on abscisic acid and jasmonic acid contents in Pinus massoniana needles. Chin J Appl Ecol, 2009, 20: 1166-1170. (in Chinese with English abstract)
[3] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析. 作物学报, 2021, 47: 462-471.
doi: 10.3724/SP.J.1006.2021.04034
Meng J Y, Liang G W, He Y J, Qian W. QTL analysis of salt and drought tolerance traits in Brassica napus L. Acta Agron Sin, 2021, 47: 462-471. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04034
[4] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析. 作物学报, 2021, 47: 780-786.
doi: 10.3724/SP.J.1006.2021.04122
Qin T Y, Liu Y H, Sun C, Bi Z Z, Li A Y, Xu D R, Wang Y H, Zhang J L, Bai J P. Identification of StIgt gene family and its response to drought stress in potato. Acta Agron Sin, 2021, 47: 780-786. (in Chinese with English abstract)
[5] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析. 作物学报, 2022, 48: 896-907.
doi: 10.3724/SP.J.1006.2022.14036
Feng Y, Zhu X, Luo H Y, Li S G, Zhang N, Si H J. Functional analysis of StMAPK4 in response to low temperature stress in potato. Acta Agron Sin, 2022, 48: 896-907. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14036
[6] Ichimura K, Shinozaki K, Tena G. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002, 7: 301-808.
pmid: 12119167
[7] Jonak C, Ökrész L, Bögre L. Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol, 2002, 5: 415-424.
pmid: 12183180
[8] Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J, 2008, 413: 217-26.
doi: 10.1042/BJ20080625 pmid: 18570633
[9] Rohila J S, Yang Y. Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. J Integr Plant Biol, 2007, 49: 751-759.
doi: 10.1111/j.1744-7909.2007.00501.x
[10] Rao K P, Richa T, Kumar K. In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res, 2010, 17: 139-153.
doi: 10.1093/dnares/dsq011 pmid: 20395279
[11] Wankhede D P, Misra M, Singh P. Rice mitogen activated protein kinase kinase and mitogen activated protein kinase interaction network revealed by in-silico docking and yeast two-hybrid approaches. PLoS One, 2013, 8: e65011.
doi: 10.1371/journal.pone.0065011
[12] Kong X P, Pan J W, Zhang D. Identification of mitogen-activated protein kinase kinase gene family and MKK-MAPK interaction network in maize. Biochem Biophys Res Commun, 2013, 441: 964-969.
doi: 10.1016/j.bbrc.2013.11.008
[13] Liu Y, Zhang D, Wang L. Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol Rep, 2013, 31: 1446-1460.
doi: 10.1007/s11105-013-0623-y
[14] Wu J, Wang J, Pan C. Genome-wide identification of MAPKK and MAPKKK gene families in tomato and transcriptional profiling analysis during development and stress response. PLoS One, 2014, 9: e103032.
doi: 10.1371/journal.pone.0103032
[15] Wang J, Wang Y, Ye L. Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber. BMC Genomics, 2015, 16: 386.
doi: 10.1186/s12864-015-1621-2 pmid: 25976104
[16] Suarez-Rodriguez MC, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol, 2010, 61: 621-649.
doi: 10.1146/annurev-arplant-042809-112252 pmid: 20441529
[17] Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol, 2013, 51: 245-266.
doi: 10.1146/annurev-phyto-082712-102314 pmid: 23663002
[18] Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci, 2015, 20: 56-64.
doi: 10.1016/j.tplants.2014.10.001 pmid: 25457109
[19] Asai T, Tena G, Plotnikova J. MAP kinase signaling cascade in Arabidopsis innate immunity. Nature, 2002, 415: 977-983.
doi: 10.1038/415977a
[20] Galletti R, Ferrari S, De Lorenzo G. Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol, 2011, 157: 804-814.
doi: 10.1104/pp.111.174003 pmid: 21803860
[21] Xiong L, Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 2003, 15: 745-759.
doi: 10.1105/tpc.008714
[22] Hua Z M, Yang X C, Fromm M E. Activation of the NaCl- and drought-induced RD29A and RD29B promoters by constitutively active Arabidopsis MAPKK or MAPK proteins. Plant Cell Environ, 2006, 29: 1761-1770.
doi: 10.1111/j.1365-3040.2006.01552.x
[23] Gu L, Liu Y, Zong X. Overexpression of maize mitogen-activated protein kinase gene, ZmSIMK1 in Arabidopsis increases tolerance to salt stress. Mol Biol Rep, 2010, 37: 4067-4073.
doi: 10.1007/s11033-010-0066-6
[24] Xu H, Li K, Yang F. Overexpression of CsNMAPK in tobacco enhanced seed germination under salt and osmotic stresses. Mol Biol Rep, 2010, 37: 3157-3163.
doi: 10.1007/s11033-009-9895-6
[25] Zhang L, Xi D, Li S. A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol Biol, 2011, 77: 17-31.
doi: 10.1007/s11103-011-9788-7
[26] 刘雪. 马铃薯MAPKK基因鉴定及其抗旱相关功能基因筛选. 甘肃农业大学硕士学位论文, 甘肃兰州, 2017.
Liu X. Identification of MAPKK Gene and Screening of Drought Resistance Related Functional Genes in Potato. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2017. (in Chinese with English abstract)
[27] 廖钰秋. 马铃薯StMAPKK1互作蛋白筛选及其互作蛋白基因功能解析. 甘肃农业大学硕士学位论文, 甘肃兰州, 2020.
Liao Y Q. Screening and Functional Analysis of Potato StMAPKK1 Interacting Protein Gene. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2020 (in Chinese with English abstract).
[28] 王国瑞, 袁珍, 张鹏钰, 仇晓, 刘志学, 王同朝, 卫丽. 玉米ZmPP2C3基因的表达及互作蛋白分析. 农业生物技术学报, 2020, 28: 389-398.
Wang G R, Yuan Z, Zhang P Y, Qiu X, Liu Z X, Wang T C, Wei L. Expression and interaction protein analysis of ZmPP2C3 gene in maize. J Agric Biotechnol, 2020, 28: 389-398. (in Chinese with English abstract)
[29] Cai G, Wang G, Wang L. A maize mitogen-activated protein kinase kinase, ZmMKK1, positively regulated the salt and drought tolerance in transgenic Arabidopsis. Plant Physiol, 2014, 171: 1003-1016.
doi: 10.1016/j.jplph.2014.02.012
[30] Li Y Y, Cai H X, Liu P. Arabidopsis MAPKKK18 positively regulates drought stress resistance via down-stream MAPKK3. Biochem Biophys Res Commun, 2017, 484: 292-297.
doi: 10.1016/j.bbrc.2017.01.104
[31] Ma H, Chen J, Zhang Z. MAPK kinase 10.2 promotes disease resistance and drought tolerance by activating different MAPKs in rice. Plant J, 2017, 92: 557-570.
doi: 10.1111/tpj.13674
[32] Fields S, Song O. A novel genetic system to detect protein- protein interactions. Nature, 1989, 340: 245-246.
doi: 10.1038/340245a0
[33] 房宸曦, 车妍, 廖钰秋, 王一凡, 张宁, 司怀军. 酵母双杂交系统筛选马铃薯StLURP1基因的互作蛋白. 农业生物技术学报, 2019, 27: 972-981.
Fang C X, Che Y, Liao Y Q, Wang Y F, Zhang N, Si H J. Screening of potato StLURP1 gene interaction protein by yeast two-hybrid system. J Agric Biotechnol, 2019, 27: 972-981. (in Chinese with English abstract)
[34] 陈明俊. 应用基因编辑技术抑制马铃薯多酚氧化酶的研究. 贵州大学硕士学位论文, 贵州贵阳, 2018.
Chen M J. Inhibition of Polyphenol Oxidase in Potato by Gene Editing. MS Thesis of Guizhou University, Guiyang, Guizhou, China, 2018. (in Chinese with English abstract)
[35] 张海星. 丹参多酚氧化酶互作蛋白的筛选与验证. 西北农林科技大学硕士学位论文, 陕西杨凌, 2019.
Zhang H X. Screening and Validation of Salvia miltiorrhiza Polyphenol Oxidase Interacting Proteins. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2019. (in Chinese with English abstract)
[36] Kupchak B R, Villa N Y, Kulemina L V. Dissecting the regulation of yeast genes by the osmotin receptor. Biochem Biophys Res Commun, 2008, 374: 210-213.
doi: 10.1016/j.bbrc.2008.07.002
[37] D’Angeli S, Altamura M M. Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization. Planta, 2007, 225: 1147-1163.
pmid: 17086398
[38] Jami S K, Swathi A T, Guruprasad L. Molecular, biochemical and structural characterization of osmotin-like protein from black nightshade (Solanum nigrum). J Plant Physiol, 2007, 164: 238-252.
doi: 10.1016/j.jplph.2006.01.006
[39] Yun D J, Ibeas J I, Lee H. Osmotin, a plant antifungal protein, subverts signal transduction to enhance fungal cell susceptibility. Mol Cell, 1998, 1: 807-817.
pmid: 9660964
[40] Lee H, Damsz B, Woloshuk C P. Use of the plant defense protein osmotin to identify Fusarium oxysporum genes that control cell wall properties. Eukaryotic Cell, 2010, 9: 558-568.
doi: 10.1128/EC.00316-09
[41] Evers D, Overney S, Simon P. Salt tolerance of Solanum tuberosum L., overexpressing a heterologous osmotin-like protein. Biol Planta, 1999, 42: 105-112.
doi: 10.1023/A:1002131812340
[42] Chen X, Guo Z. Tobacco OPBP1 enhances salt tolerance and disease resistance of transgenic rice. Int J Mol Sci, 2008, 9: 2601-2613.
doi: 10.3390/ijms9122601 pmid: 19330095
[43] Zhang C, Meng S, Li M. Genomic identification and expression analysis of the phophate transporter gene family in popar. Front Plant Sci, 2016, 7: 1398-1412.
[44] Lhamo D, Shao Q, Tang R. Genome-wide analysis of the five phosphate transporter families in Camelina sativa and their expressions in response to low-P. Int J Mol Sci, 2020, 21: 8365.
doi: 10.3390/ijms21218365
[45] 王晓丹. 甜菜磷酸盐转运蛋白基因的克隆及表达分析. 黑龙江大学硕士学位论文, 黑龙江哈尔滨, 2021.
Wang X D. Cloning and Expression Analysis of Phosphate Transporter Gene in Sugar Beet. MS Thesis of Heilongjiang University, Harbin, Heilongjiang, China, 2021. (in Chinese with English abstract)
[1] PAN Jie-Ming, TIAN Shao-Rui, LIANG Yan-Lan, ZHU Yu-Lin, ZHOU Ding-Gang, QUE You-Xiong, LING Hui, HUANG Ning . Identification and expression analysis of PIN-LIKES gene family in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(2): 414-425.
[2] WU Xu-Li, WU Zheng-Dan, WAN Chuan-Fang, DU Ye, GAO Yan, LI Ze-Xuan, WANG Zhi-Qian, TANG Dao-Bin, WANG Ji-Chun, ZHANG Kai. Functional identification of sucrose transporter protein IbSWEET15 in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(1): 129-139.
[3] HUI Zhi-Ming, XU Jian-Fei, JIAN Yin-Qiao, BIAN Chun-Song, DUAN Shao-Guang, HU Jun, LI Guang-Cun, JIN Li-Ping. 2b-RAD based maturity associated molecular marker identification in tetraploid potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2274-2284.
[4] KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179.
[5] YAO Zhu-Fang, ZHANG Xiong-Jian, YANG Yi-Ling, HUANG Li-Fei, CHEN Xin-Liang, YAO Xiao-Jian, LUO Zhong-Xia, CHEN Jing-Yi, WANG Zhang-Ying, FANG Bo-Ping. Genetic diversity of phenotypic traits in 177 sweetpotato landrace [J]. Acta Agronomica Sinica, 2022, 48(9): 2228-2241.
[6] XIE Li-Ming, JIANG Zhong-Yu, LIU Hong-Juan, HAN Jun-Jie, LIU Ben-Kui, WANG Xiao-Lu, SHI Chun-Yu. Suitable soil moisture promotes sugar supply and tuberization in sweet potato at root branching stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2080-2087.
[7] WANG Sha-Sha, HUANG Chao, WANG Qing-Chang, CHAO Yue-En, CHEN Feng, SUN Jian-Guo, SONG Xiao. Cloning and functional identification of TaGS2 gene related to kernel size in bread wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1926-1937.
[8] YANG Xin, LI Yu, LIU Chuan-Bing, ZHANG Li-Lan, HE Qin-Yao, QI Jian-Min, ZHANG Li-Wu. Reference genes screening for expression analysis of secondary cell wall synthesis related genes in jute (Corchorus capsularis) [J]. Acta Agronomica Sinica, 2022, 48(7): 1614-1624.
[9] JIAN Hong-Ju, ZHANG Mei-Hua, SHANG Li-Na, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Screening candidate genes involved in potato tuber development using WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1658-1668.
[10] LI Jie-Ya, LI Hong-Yan, YE Guang-Ji, SU Wang, SUN Hai-Hong, WANG Jian. Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period [J]. Acta Agronomica Sinica, 2022, 48(7): 1669-1682.
[11] CHEN Lu, ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing. Identification and expression analysis of uncoupling protein gene family in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(7): 1683-1696.
[12] WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278.
[13] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[14] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[15] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[5] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[6] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[7] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[8] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[9] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[10] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .