Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 622-633.doi: 10.3724/SP.J.1006.2023.23024

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL locating and genomic selection for tassel-related traits using F2:3 lineage haploids

XU Jia-Bo(), WU Peng-Hao, HUANG Bo-Wen, CHEN Zhan-Hui, MA Yue-Hong, REN Jiao-Jiao()   

  1. College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
  • Received:2022-03-03 Accepted:2022-06-07 Online:2023-03-12 Published:2022-07-07
  • Contact: REN Jiao-Jiao E-mail:1142019044@qq.com;renjiaojiao789@sina.com
  • Supported by:
    National Natural Science Foundation of China(U2003304);National Natural Science Foundation of China(32060484);National Natural Science Foundation of China(32001561);Scientific and Technological Talent Training Project for Excellent Youth in Tianshan Mountain of Autonomous Region(2018Q019);Natural Science Foundation of Xinjiang(2019D01A41);Postdoctoral Project(2018M643774);Xinjiang Main Crop Biological Breeding Innovation Project (I)—Maize Biological Breeding Innovation Project(2021A02001-2);Xinjiang Maize Green High Yield, Quality and Efficiency Technology Optimization Integration and Application Funding(2021B02002-2)

Abstract:

Tassel size affects the nutrient allocation synthesized by photosynthesis in maize, which in turn affects ears development and the yield components, such as kernel rows, kernel number per row, seeding rate, and kernels weight per one hundred. In this study, haploids were induced using the F2:3 families, which were constructed from the elite inbred lines Zheng 58 and B73. Genotypes were obtained by 48K liquid phase hybridization capture probes technique, and phenotypes were evaluated in multi-environment trails. QTL mapping was performed using the inclusive composite interval mapping (ICIM) method. The RRBLUP model was used for genomic selection to explore the effects of training population size and the number of SNP markers on prediction accuracy. The results showed that the heritabilities of tassel length, tassel primary branch number, tassel secondary branch number, and tassel branch number were 0.82, 0.88, 0.84, and 0.88, respectively. Two QTL, located in bins 1.03 and 4.09, were detected for tassel length with phenotypic variation explained (PVE) of 6.02% and 11.10%, respectively. Two QTL, located in bins 1.05 and 4.05, were detected for tassel primary branch with PVE of 9.17% and 11.75%, respectively. Two QTL, located in bins 2.03 and 3.06, were detected for the tassel secondary branch with PVE of 5.51% and 5.65%, respectively. Two QTLs, located in bins 1.04 and 4.05, were detected for the tassel branch number with PVE of 9.37% and 10.83%, respectively. Tassel primary branch number and tassel branch number identified a same QTL located in bin 4.05 with multiple effects. The prediction accuracy of five-fold cross-validation for genomic selection was 0.36, 0.41, 0.28, and 0.37, respectively. When the training population reached 60% of the total population and the marker density reached 500, a high prediction accuracy could be obtained.

Key words: maize (Zea mays L.), haploid, tassel, QTLs, genomic selection

Table 1

Assessment of tassel related traits in maize haploids"

性状
Trait
测定方法
Assessment
雄穗主轴长
Tassel length
测量雄穗最底部分枝的基部至雄穗顶端的长度[17-18]
Measure the length from the base of the lowest branch of the tassel to the tip of the tassel[17-18].
雄穗一级分枝数
Tassel primary branch number
对基部与雄穗主茎直接相连的分枝进行计数[7]
The branches whose base is directly connected to the main stem of the tassel were counted[7].
雄穗二级分枝数
Tassel secondary branch number
对基部与一级分枝直接相连的分枝进行计数。
Counting of branches whose base is directly connected to the primary branches.
雄穗总分枝数
Tassel branch number
计算雄穗一级分枝和雄穗二级分枝的总和[11,17]
Calculate the sum of the tassel primary branche number and the tassel secondary branche number[11,17].

Table 2

Descriptive statistics of tassel related traits in maize haploids"

性状
Trait
均值
Mean
最小值
Min.
最大值
Max.
偏度
Skewness
峰度
Kurtosis
变异系数
CV
雄穗主轴长Tassel length (cm) 18.52 17.33 19.90 0.12 -0.57 0.03
雄穗一级分枝数Tassel primary branch number 5.85 3.79 8.32 0.16 -0.22 0.14
雄穗二级分枝数Tassel secondary branch number 0.79 0.50 1.23 0.48 -0.14 0.19
雄穗总分枝数Tassel branch number 6.64 4.33 9.51 0.17 -0.22 0.15

Table 3

Variance analysis and broad-sense heritability (H2) analysis for tassel traits in maize haploids"

性状
Trait
方差来源
Source of variances
自由度
DF
均方
Mean of square
F
F-value
P
P-value
遗传力
H2
雄穗主轴长
Tassel length
基因型Genotype (G) 199 5.27 2.56 <0.01** 0.82
环境Environment (E) 2 8.04 3.90 0.02*
基因×环境型
Genotype × environment (G×E)
304 2.38 1.16 0.08
残差Error 506 2.06
雄穗一级分枝数
Tassel primary branch number
基因型G 199 7.48 4.35 <0.01** 0.88
环境E 2 72.74 42.29 <0.01**
基因×环境型G×E 304 2.22 1.29 <0.01**
残差Error 506 1.72
雄穗二级分枝数
Tassel secondary branch number
基因型G 199 0.35 2.67 <0.01** 0.84
环境E 2 6.71 51.14 <0.01**
基因×环境型G×E 304 0.14 1.06 0.28
残差Error 506 0.13
雄穗总分枝数
Tassel branch number
基因型G 199 9.72 4.21 <0.01** 0.88
环境E 2 120.89 52.42 <0.01**
基因×环境型G×E 304 2.83 1.23 0.02*
残差Error 506 2.31

Fig. 1

Correlation analysis of tassel related traits in maize haploid *: P < 0.05; **: P < 0.01; ***: P < 0.001. The circle from small to large represents the correlation coefficient from low to high."

Fig. 2

QTLs mapping of tassel related traits in maize haploid population"

Table 4

QTL mapping of haploid tassel related traits under three environmental conditions"

性状
Trait
QTL 染色体/bin
Chr./bin
遗传位置
Genetic position (cM)
物理距离a
Physical position (Mb)a
LOD值
LOD-value
表型贡献率
PVE (%)
加性效应
Additive
显性效应
Dominant
基因效应b
Gene actionb
参考文献
Reference
雄穗主轴长
Tassel length
qTL1-1 1/1.03 34 32.50-32.53 3.01 6.02 0.05 −0.25 OD 贾波等[24] Jia B, et al.[24]
qTL4-1 4/4.09 69 223.30-224.37 5.40 11.10 0.27 −0.04 A
雄穗一级分枝数
Tassel primary branch number
qTPBN1-1 1/1.05 61 102.35-105.19 4.98 9.17 0.37 −0.20 PD 杨钊钊等[6] Yang Z Z, et al.[6]
qTPBN4-1 4/4.05 31 75.57-79.81 6.29 11.75 −0.42 0.20 PD
雄穗二级分枝数
Tassel secondary branch number
qTSBN2-1 2/2.03 35 26.29-27.50 2.69 5.51 −0.06 −0.01 A
qTSBN3-1 3/3.06 47 185.21-185.33 2.78 5.65 0.06 0.01 A 张先创[8] Zhang X C[8]
雄穗总分枝数
Tassel branch number
qTBN1-1 1/1.04 46 56.92-57.40 5.11 9.37 0.42 −0.28 PD 张先创[8]、Upadyayula等[25]
Zhang X C[8]; Upadyayula, et al.[25]
qTBN4-1 4/4.05 31 75.57-79.81 5.80 10.83 −0.46 0.22 PD

Fig. 3

Genomic selection accuracy of tassel related traits in the haploid population"

Fig. 4

Genomic selection accuracy of tassel related traits in the haploid population with different training population sizes A: tassel length; B: tassel primary branch number; C: tassel secondary branch number; D: tassel branch number."

Fig. 5

Genomic selection accuracy of tassel related traits in the haploid population with different number of SNPs A: tassel length; B: tassel primary branch number; C: tassel secondary branch number; D: tassel branch number."

[1] Lambert R J, Johnson R R. Leaf angle, tassel morphology, and the performance of maize hybrids 1. Crop Sci, 1978, 18: 499-502.
doi: 10.2135/cropsci1978.0011183X001800030037x
[2] 王赛, 王宇宇, 王石磊, 徐梦真, 邹欢, 侯清桂, 毛棣, 田磊, 陈彦惠, 吴连成. 基于SNP遗传图谱定位玉米雄穗分枝数和主轴长QTLs. 河南农业大学学报, 2019, 53: 671-676.
Wang S, Wang Y Y, Wang S L, Xu M Z, Zou H, Hou Q G, Mao D, Tian L, Chen Y H, Wu L C. QTLs mapping of tassel branch number and tassel total length in maize based on SNP genetic map. J Henan Agric Univ, 2019, 53: 671-676. (in Chinese with English abstract)
[3] Wartha C A, Cargnelutti Filho A, Lúcio A D, Follmann D N, Kleinpaul J A, Simões F M. Sample sizes to estimate mean values for tassel traits in maize genotypes. Genet Mol Res, 2016, 15: gmr15049151.
[4] Qin X, Tian S, Zhang W, Dong X, Ma C, Wang Y, Yan J, Yue B. Q Dtbn1, an F-box gene affecting maize tassel branch number by a dominant model. Plant Biotechnol J, 2021, 19: 1183-1194.
doi: 10.1111/pbi.13540
[5] 申涛, 谭康, 李春红, 杨梅, 胡小兰, 蒋滔, 张志, 邱红波. 玉米株型相关性状的QTL定位. 分子植物育种, 2022, 20: 155-162.
Shen T, Tan K, Li C H, Yang M, Hu X L, Jiang T, Zhang Z, Qiu H B. QTL mapping for plant type related traits in maize. Mol Plant Breed, 2022, 20: 155-162. (in Chinese with English abstract)
[6] 杨钊钊, 李永祥, 刘成, 刘志斋, 李春辉, 李清超, 彭勃, 张岩, 王迪, 谭巍巍, 孙宝成, 石云素, 宋燕春, 王天宇, 黎裕. 基于多个相关群体的玉米雄穗相关性状QTL分析. 作物学报, 2012, 38: 1435-1442.
doi: 10.3724/SP.J.1006.2012.01435
Yang Z Z, Li Y X, Liu C, Liu Z Z, Li C H, Li Q C, Peng B, Zhang Y, Wang D, Tan W W, Sun B C, Shi Y S, Song Y C, Wang T Y, Li Y. QTL analysis of tassel-related traits in maize (Zea mays L.) using multiple connected populations. Acta Agron Sin, 2012, 38: 1435-1442. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.01435
[7] 高世斌, 赵茂俊, 兰海, 张志明. 玉米雄穗分枝数与主轴长的QTL鉴定. 遗传, 2007, 29: 1013-1017.
Gao S B, Zhao M J, Lan H, Zhang C M. Identification of QTL associated with tassel branch number and total tassel length in maize. Hereditas, 2007, 29: 1013-1017. (in Chinese with English abstract)
[8] 张先创. 玉米雄穗相关性状的QTL定位. 西南大学硕士学位论文, 重庆, 2020.
Zhang X C. QTL Mapping of Tassel Related Traits in Maize (Zea mays L.). MS Thesis of Southwest University, Chongqing, China, 2020. (in Chinese with English abstract)
[9] Wu X, Guo X Y, Wang A G, Liu P F, Wu W Q, Zhao Q, Zhao M Y, Zhu Y F, Chen Z H. Quantitative trait loci mapping of plant architecture-related traits using the high-throughput genotyping by sequencing method. Euphytica, 2019, 215: 212.
doi: 10.1007/s10681-019-2535-x
[10] Upadyayula N, Wassom J, Bohn M O, Rocheford T R. Quantitative trait loci analysis of phenotypic traits and principal components of maize tassel inflorescence architecture. Theor Appl Genet, 2006, 113: 1395-1407.
pmid: 17061102
[11] Mickelson S M, Stuber C S, Senior L, Kaeppleret S M. Quantitative trait loci controlling leaf and tassel traits in a B73×Mo17 population of maize. Crop Sci, 2002, 42: 1902-1909.
doi: 10.2135/cropsci2002.1902
[12] Liu X, Hao L, Kou S, Su E, Zhou Y, Wang R, Mohamed A, Gao C, Zhang D, Li Y, Li H, Song Y, Shi Y, Wang T, Li Y. High-density quantitative trait locus mapping revealed genetic architecture of leaf angle and tassel size in maize. Mol Breed, 2019, 39: 7.
doi: 10.1007/s11032-018-0914-y
[13] Olatoye M O, Clark L V, Wang J P, Yang X P, Yamada T, Sacks E L, Lipka A E. Evaluation of genomic selection and marker- assisted selection in Miscanthus and energy cane. Mol Breed, 2019, 39: 1-16.
doi: 10.1007/s11032-018-0907-x
[14] 刘策, 孟焕文, 程智慧. 植物全基因组选择育种技术原理与研究进展. 分子植物育种, 2020, 18: 5335-5342.
Liu C, Meng H W, Cheng Z H. Plant genome-wide selection breeding technical principle and research progress. Mol Plant Breed, 2020, 18: 5335-5342. (in Chinese with English abstract)
[15] Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger A E. Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet, 2012, 44: 217-220.
doi: 10.1038/ng.1033 pmid: 22246502
[16] Liu X G, Wang H W, Wang H, Guo Z F, Xu X J, Liu J C, Wang S H, Li W X, Zou C, Prasanna B M, Olsen M S, Huang C L, Xu Y B. Factors affecting genomic selection revealed by empirical evidence in maize. Crop J, 2018, 6: 341-352.
doi: 10.1016/j.cj.2018.03.005
[17] Wu X, Li Y X, Shi Y S, Song Y C, Zhang D F, Li C H, Buckler E S, Li Y, Zhang Z W, Wang T Y. Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnol J, 2016, 14: 1551-1562.
doi: 10.1111/pbi.12519 pmid: 26801971
[18] Brown P J, Upadyayula N, Mahone G S, Tian F, Bradbury P J, Myles S, Holland J B, Flint-Garcia S, McMullen M D, Buckler E S, Rocheford T R. Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet, 2011, 7: e1002383.
[19] Song W B, Wang B B, Hauck A L, Dong X M, Li J P, Lai J S. Genetic dissection of maize seedling root system architecture traits using an ultra-high density bin-map and a recombinant inbred line population. J Integr Plant Biol, 2016, 58: 266-279.
doi: 10.1111/jipb.12452
[20] Stuber C W, Edwards M D A, Wendel J F. Molecular marker-facilitated investigations of quantitative trait loci in maize. II: Factors influencing yield and its component traits. Crop Sci, 1987, 27: 639-648.
doi: 10.2135/cropsci1987.0011183X002700040006x
[21] Endelman J B, Atlin G N, Beyene Y, Semagn K, Zhang X C, Sorrells M E, Jannink J L. Optimal design of preliminary yield trials with genome-wide markers. Crop Sci, 2014, 54: 48-59.
doi: 10.2135/cropsci2013.03.0154
[22] 李宗泽, 徐晓明, 孙强, 杨彩霞, 许加波, 吴鹏昊. 玉米穗轴长与穗轴粗的QTL定位及全基因组预测. 中国农业大学学报, 2022, 27(4): 44-52.
Li Z Z, Xu X M, Sun Q, Yang C X, Xu J B, Wu P H. QTL mapping and genomic selection of cob length and diameter in maize. J China Agric Univ, 2022, 27(4): 44-52. (in Chinese with English abstract)
[23] Cao S L, Loladze A, Yuan Y B, Wu Y S, Zhang A, Chen J F, Gordon H, Cao J S, Chaikam V, Olsen M, Prasanna B M, San V, Zhang X C. Genome-wide analysis of tar spot complex resistance in maize using genotyping-by-sequencing SNPs and whole-genome prediction. Plant Genome, 2017, 10. doi: 10.3835/plantgenome2016.10.0099.
doi: 10.3835/plantgenome2016.10.0099
[24] 贾波, 崔敏, 谢庆春, 严卫古, 印志同. 基于SNP标记的玉米雄穗主要性状QTL定位分析. 西南农业学报, 2019, 32: 1469-1473.
Jia B, Cui M, Xie Q C, Yan W G, Yin Z T. QTL analysis of tassel traits based on SNP markers in maize. Southwest China J Agric Sci, 2019, 32: 1469-1473. (in Chinese with English abstract)
[25] Upadyayula N, Da Silva H S, Bohn M O, Rocheford T R. Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor Appl Genet, 2006, 112: 592-606.
doi: 10.1007/s00122-005-0133-x pmid: 16395569
[26] Wang B B, Liu H, Liu Z P, Dong X M, Guo J J, Li W, Chen J, Gao C, Zhu Y B, Zheng X M, Chen Z L, Chen J, Song W B, Hauck A, Lai J S. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). BMC Plant Biol, 2018, 18: 17.
doi: 10.1186/s12870-018-1233-5 pmid: 29347909
[27] Yang W F, Zheng L Z, He Y, Zhu L Y, Chen X Q, Tao Y S. Fine mapping and candidate gene prediction of a major quantitative trait locus for tassel branch number in maize. Gene, 2020, 757: 144928.
doi: 10.1016/j.gene.2020.144928
[28] Xu G H, Wang X F, Huang C, Xu D Y, Li D, Tian J G, Chen Q Y, Wang C L, Liang Y M, Wu Y Y, Yang X H, Tian F. Complex genetic architecture underlies maize tassel domestication. New Phytol, 2017, 214: 852-864.
doi: 10.1111/nph.14400 pmid: 28067953
[29] Chen Z L, Wang B B, Dong X M, Liu H, Ren L H, Chen J, Hauck A, Song W B, Lai J S. An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics, 2014, 15: 433.
doi: 10.1186/1471-2164-15-433
[30] 邵元健. 质量性状和数量性状含义的辨析. 生物学杂志, 2006, (4): 55-57.
Shao Y J. Discrimination of the meaning of qualitative and quantitative traits. J Biol, 2006, (4): 55-57. (in Chinese)
[31] Cerrudo D, Cao S L, Yuan Y B, Martinez C, Suarez E A, Babu R, Zhang X C, Trachsel S. Genomic selection outperforms marker assisted selection for grain yield and physiological traits in a maize doubled haploid population across water treatments. Front Plant Sci, 2018, 9: 366.
doi: 10.3389/fpls.2018.00366 pmid: 29616072
[32] Lorenzana R E, Bernardo R. Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet, 2009, 120: 151-161.
doi: 10.1007/s00122-009-1166-3 pmid: 19841887
[33] Amini F, Franco F R, Hu G P, Wang L Z. The look ahead trace back optimizer for genomic selection under transparent and opaque simulators. Sci Rep, 2021, 11: 4124.
doi: 10.1038/s41598-021-83567-5 pmid: 33602979
[34] Guo R, Dhliwayo T, Mageto E K, Rajas N P, Lee M, Yu D S, Ruan Y Y, Zhang A, Vicente F S, Olsen M, Crossa J, Prasanna B M, Zhang L J, Zhang X C. Genomic prediction of kernel zinc concentration in multiple maize populations using genotyping-by-sequencing and repeat amplification sequencing markers. Front Plant Sci, 2020, 11: 534.
doi: 10.3389/fpls.2020.00534 pmid: 32457778
[35] Cao S L, Song J Q, Yuan Y B, Zhang A, Ren J J, Liu Y B, Qu G H, Zhang J G, Wang C P, Cao J S, Olsen M S, Boddupalli P, Vicente F S, Zhang X C. Genomic prediction of resistance to tar spot complex of maize in multiple populations using genotyping-by-sequencing SNPs. Front Plant Sci, 2021, 12: 1438.
[36] Ren J J, Li Z M, Wu P H, Zhang A, Liu Y B, Hu G H, Cao S L, Qu J T, Dhliwayo T, Zheng H J, Olsen M S, Boddupalli P, Vicente F S, Zhang X C. Genetic dissection of quantitative resistance to common rust (Puccinia sorghi) in tropical maize (Zea mays L.) by combined genome-wide association study, linkage mapping, and genomic prediction. Front Plant Sci, 2021, 12: 1338.
[37] Liu X G, Wang H W, Hu X J, Li K, Liu Z F, Wu Y J, Huang C L. Improving genomic selection with quantitative trait loci and nonadditive effects revealed by empirical evidence in maize. Front Plant Sci, 2019, 10: 1129.
doi: 10.3389/fpls.2019.01129 pmid: 31620155
[1] XIANG Si-Qian, LI Ru-Xiang, XU Guang-Yi, DENG Ke-Li, YU Jin-Jin, LI Miao-Miao, YANG Zheng-Lin, LING Ying-Hua, SANG Xian-Chun, HE Guang-Hua, ZHAO Fang-Ming. Identification and pyramid analysis of QTLs for grain size based on rice long-large-grain chromosome segment substitution line Z66 [J]. Acta Agronomica Sinica, 2023, 49(3): 731-743.
[2] ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128.
[3] YAN Weikai. A critical review on the principles and procedures for cultivar development and evaluation [J]. Acta Agronomica Sinica, 2022, 48(9): 2137-2154.
[4] XUE Jiao, LU Dong-Bai, LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’ [J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220.
[5] HUANG Yi-Wen, SUN Bin, CHENG Can, NIU Fu-An, ZHOU Ji-Hua, ZHANG An-Peng, TU Rong-Jian, LI Yao, YAO Yao, DAI Yu-Ting, XIE Kai-Zhen, CHEN Xiao-Rong, CAO Li-Ming, CHU Huang-Wei. QTL mapping of seed storage tolerance in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264.
[6] LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893.
[7] ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904.
[8] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[9] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[10] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[11] YANG Ming, LI Dan-Ting, FAN De-Jia, TAN Song-Juan, CHENG Xia-Nian, LIU Yu-Qiang, WAN Jian-Min. Mapping of QTLs for resistance to white-backed planthopper in Guangxi wild rice Y11 [J]. Acta Agronomica Sinica, 2022, 48(11): 2715-2723.
[12] WU Jia-Yi, YUAN Fang, MENG Li-Jiao, LI Chen-Yang, SHI Hong-Song, BAI Yan-Song, WU Xiao-Ru, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. QTL mapping and candidate genes screening of photosynthesis-related traits in Brassica napus L. during seedling stage under aluminum stress [J]. Acta Agronomica Sinica, 2022, 48(11): 2749-2764.
[13] WEN Qin, JIA Si-Si, WANG Jia-Feng, HUANG Cui-Hong, WANG Hui, CHEN Zhi-Qiang, GUO Tao. Construction and identification of haploid induction gene OsMATL mutants in rice [J]. Acta Agronomica Sinica, 2021, 47(5): 827-836.
[14] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[15] LYU Guo-Feng, BIE Tong-De, WANG Hui, ZHAO Ren-Hui, FAN Jin-Ping, ZHANG Bo-Qiao, WU Su-Lan, WANG Ling, WANG Zun-Jie, GAO De-Rong. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(12): 2335-2347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[8] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[9] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[10] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .