Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 634-646.doi: 10.3724/SP.J.1006.2023.22005

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.)

LI Qiu-Ping1(), ZHANG Chun-Long1, YANG Hong1, WANG Tuo1, LI Juan1, JIN Shou-Lin1, HUANG Da-Jun1, LI Dan-Dan1,2,*(), WEN Jian-Cheng1,*()   

  1. 1Rice Research Institute of Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2Key Laboratory of Crop Production and Intelligent Agriculture of Yunnan Province, Kunming 650201, Yunnan, China
  • Received:2022-01-21 Accepted:2022-06-07 Online:2023-03-12 Published:2022-07-05
  • Contact: LI Dan-Dan,WEN Jian-Cheng E-mail:qiupingyouxiang@163.com;lidanzaizhe@163.com;jcwen1117@163.com
  • Supported by:
    Major Science and Technology Project of Yunnan Province(202102AE090017);Basic Research General Program of Yunnan Province(202201AT070263);Science Research Fund Project of Yunnan Education Department(2022J0280);Open Fund Project of Key Laboratory of Crop Production and Intelligent Agriculture of Yunnan Province(20210101)

Abstract:

In this study, the advanced backcross population of semi-fertility plant 10 (sfp10) mutation constructed by rice pollen semi-fertile mutant lsm and indica rice cultivar 93-11 (wild-type, WT) was used as the research subjects. Compared to the WT, there were no significant differences in plant height, leaf length, leaf width, tiller number, pollen number and other agronomic traits, but pollen fertility reduced significantly. Pollen microscopy and scanning electron microscopy (SEM) at the late stage of pollen development showed that starch accumulation in some pollen of sfp10 decreased observably, eventually led to pollen abortion. Physiological indexes related pollen development revealed that the contents of proline and starch in pollen of the sfp10 mutant decreased significantly. Sucrose accumulation generally increased in the upstream tissues (source leaf, sink leaf, and stem) of panicle, but sucrose content decreased significantly in panicle, indicating that transport from sucrose to panicle was affected. Genetic analysis indicated that the sfp10 phenotype was controlled by a pair of recessive nuclear genes. Gene preliminary mapping located the mutant site into a 398 kb interval between RM25389 and RM25404 on rice chromosome 10, which contained 3 genes related to sucrose transport and 1 gene related to starch synthesis. This study laid a foundation for further research on fine mapping, gene function, and regulation mechanism of pollen semi-fertility regulation genes.

Key words: rice, semi-fertility plant, sfp10, gene mapping, starch accumulation

Table S1

Molecular markers for sfp10 gene mapping"

标记
Marker
染色体
Chr.
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
扩增长度
Amplification length (bp)
RM24899 10 CACAAGTTCTGGGTCTCAGTGG AGAGGATCAACATCGCAATACC 280
RM24985 10 CACCTCCTCTCTCCTCTCTATCTTCC TATAAGGGCTTTCGGATGGATGG 262
RM25003 10 GATTGATCCGAGAGACAAATCC TCGATCAATAGTAGCAGCAGTAGG 116
RM25164 10 AAGAAGCGGACAGAAAGAAAGG AGAAGGAACGCACCCTAACG 368
RM25741 10 AAGGCCAGGCGGATTAGTGG AGAGGCTGGGTCCTTCCTCTCG 115
RM25810 10 GAAGGGCAGGAGGAGATAGTAGTAGG CGTCATTGTCGCCAGAAAGC 134
RM25273 10 ATCCAAGAACCATGTCGTTTCG TGCACAGTGGTAGCCAACTTATCC 345
RM5806 10 GAATGCTAATTGCGGTTGAAGC GGATCTTTCCTCCCAATCTTTGC 176
RM25425 10 CCAGCCCAAACAGCTCTTGC GGGCACTGTTTGTCTTTCTGTGC 155
mfp15 10 AGGGTAGAGTATGTCGGTGTTTCC CCGTGGCAGTAGCAGTAGGC 180
mfp41 10 GACACGGTTCTCCTTCCACTACC CGATGATAGCGTTAGCCATAACA 260
RM6142 10 CCTGCTTCTCCCTCCTGTACCC GCGAGCAAATACAGAGGCTACTACC 100
RM25348 10 CTCACGCCGATCAGAGCAAGC GCATCTCCATTCTACCACCCATTCG 283
RM25368 10 TATAGTTAAGGGAGCCACGCAAGC CCACCTCGTAAGAACATGGAGAACC 952
RM25379 10 CCCTTAGATTCCTGCAGCTTTCC AAGAGGGAATTGGAGGAATGAGC 216
RM25385 10 GCATCTCAAAGGAACTGACTGACC ATGAGATGCCTGCCATTGTACC 117
RM25389 10 GGAATGGGAGCTTCTGGCTAGG GGCGTGCACTGGCATAATTACC 471
RM25404 10 GCAACGGTTCTCCTTCCACTACC CCATGATAGCGTTAGCCATAAACG 265
RM5708 10 TGGTATCCATAACCTTGACAGC GTCACGTATCGAACAGTCTCC 249
RM24875 10 GATGAGCGAGGACAAGAATTAAGC GCTAGCTGATTCAGATCCCATCG 198
RM24956 10 TTCGTGTGCATTCCCACACATCC AAGGGTGAGGTGGCGGCTTAGG 298
RM25142 10 TGTGAGGAGAGCCATTTAGC GGGTTCCAGTCTTGAATTTAGC 206
RM25334 10 CCGTACACCGAGCTCATCACC CTTGGACAGCTTGAACGAGATCC 212
RM25359 10 CCTGCCGAAACCAACCTTATTCC GCGAAGGTAAAGCCCAATACTGTTCC 212
RM25362 10 CAGGAGCTCGCGGTTCATCG AGAGGAGGTTCTCCCTCGTGTGC 77
RM25365 10 TCTCGTCAACTTCGCTTGTATCG CGATTCGACTCTAAACAGTGATGC 155
RM25366 10 TCGGTCTCTGTGCCGTGATTAGG CACCAGCGCAGCAACTAACATCC 105
RM25375 10 TGTAGCTGCACATCTCCTTCAGC GCTCATCTCCAAGCTGCAGTCC 218
RM25376 10 GCGCTGACCTTCGGCACTTAGC CGTTCCGGATTTATCTGCTTGAGACC 447
RM25377 10 TTGGTTTCCTAGCTTGGCCTACG TAGAATGCGATGCGAGACAGTGG 160
RM25378 10 CCGTACGTTCAGGTATGTGTTTAAGG AGCAAACAGGCAGCATAAGAGG 400
RM25380 10 CGAGAACAGCTCCGAGATCAACC ATGGAGGCGTAGAACGGGATGC 111
RM8201 10 CCCACTATGCTGGTACACATCTTTCG CCTCTTCCGCTTCGCCTTCG 291
RM25386 10 GAGCACGAAAGCATGGGACAACC CGCAGAGCTCCAAGAAACACAGC 214
RM6868 10 GAGGTGAACATGCCGAGGAAGC GGCCGGAGTATATAGAACCCAAAGC 188
标记
Marker
染色体
Chr.
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
扩增长度
Amplification length (bp)
RM25407 10 TAGAAAGCCCACTTCCAACACG CCAGCTCGATACCCAAGTAAGTCC 400
RM14 1 CCGAGGAGAGGAGTTCGAC GTGCCAATTTCCTCGAAAAA 191
RM486 1 CCCCCCTCTCTCTCTCTCTC CCCCCCTCTCTCTCTCTCTC 104
RM315 1 GAGGTACTTCCTCCGTTTCAC AGTCAGCTCACTGTGCAGTG 133
RM579 1 TCCGAGTGGTTATGCAAATG AATTGTGTCCAATGGGCTGT 182
RM23 1 CATTGGAGTGGAGGCTGG GTCAGGCTTCTGCCATTCTC 145
RM211 2 CCGATCTCATCAACCAACTG CTTCACGAGGATCTCAAAGG 161
RM112 2 GGGAGGAGAGGCAAGCGGAGAG AGCCGGTGCAGTGGACGGTGAC 128
RM110 2 TCGAAGCCATCCACCAACGAAG TCCGTACGCCGACGAGGTCGAG 156
RM475 2 CCTCACGATTTTCCTCCAAC ACGGTGGGATTAGACTGTGC 235
RM6 3 GTCCCCTCCACCCAATTC TCGTCTACTGTTGGCTGCAC 163
RM156 3 GCCGCACCCTCACTCCCTCCTC TCTTGCCGGAGCGCTTGAGGTG 160
RM514 3 AGATTGATCTCCCATTCCCC CACGAGCATATTACTAGTGG 259
RM293 3 TCGTTGGGAGGTATGGTACC CTTTATCTGATCCTTGGGAAGG 207
RM143 3 GTCCCGAACCCTAGCCCGAGGG AGAGGCCCTCCACATGGCGACC 207
RM523 3 AAGGCATTGCAGCTAGAAGC GCACTTGGGAGGTTTGCTAG 148
RM503 3 CACCTTTCACACACACACAC GCCCCACTAACAAAACCAAG 268
RM401 4 TGGAACAGATAGGGTGTAAGGG CCGTTCACAACACTATACAAGC 283
RM471 4 ACGCACAAGCAGATGATGAG GGGAGAAGACGAATGTTTGC 106
RM273 4 GAAGCCGTCGTGAAGTTACC GTTTCCTACCTGATCGCGAC 207
RM334 5 GTTCAGTGTTCAGTGCCACC GACTTTGATCTTTGGTGGACG 182
RM163 5 ATCCATGTGCGCCTTTATGAGGA CGCTACCTCCTTCACTTACTAGT 124
RM440 5 CATGCAACAACGTCACCTTC ATGGTTGGTAGGCACCAAAG 169
RM136 6 GAGAGCTCAGCTGCTGCCTCTAGC GAGGAGCGCCACGGTGTACGCC 101
RM204 6 GTGACTGACTTGGTCATAGGG GCTAGCCATGCTCTCGTACC 169
RM589 6 ATCATGGTCGGTGGCTTAAC CAGGTTCCAACCAGACACTG 186
RM412 6 CACTTGAGAAAGTTAGTGCAGC CCCAAACACACCCAAATAC 198
RM527 6 GGCTCGATCTAGAAAATCCG TTGCACAGGTTGCGATAGAG 233
RM427 7 TCACTAGCTCTGCCCTGACC TGATGAGAGTTGGTTGCGAG 185
RM432 7 TTCTGTCTCACGCTGGATTG AGCTGCGTACGTGATGAATG 187
RM38 8 ACGAGCTCTCGATCAGCCTA TCGGTCTCCATGTCCCAC 250
RM296 9 CACATGGCACCAACCTCC GCCAAGTCATTCACTACTCTGG 123
RM206 11 CCCATGCGTTTAACTATTCT CGTTCCATCGATCCGTATGG 147
RM224 11 ATCGATCGATCTTCACGAGG TGCTATAAAAGGCATTCGGG 157
RM254 11 AGCCCCGAATAAATCCACCT CTGGAGGAGCATTTGGTAGC 165
RM473 11 TATCCTCGTCTCCATCGCTC AAGGATGTGGCGGTAGAATG 97
RM28778 12 CTTCATCACCGCCTCCGTTCC AGCTCTCTCCCGCTCTGGATGC 165
RM28802 12 GGAGGCTTAACTCAGCACTACTGG CATGCTCAGATGTGTTCACTTGG 179
RM28812 12 GGGAATTGAGAATCGACAGAAACC CCAGTACGTCAAACAGGGCTACG 195
RM28819 12 GAACGTCTCGTTCCCTATCACG TCCACTCACTCATCTCTCCTTGC 244
RM27545 12 GCAGGTTAGTTCACTCCATGTGC TTCGAAGGGTCTTGTGATGTATCC 375

Fig. 1

Phenotypic comparison of wild type 93-11 and mutant sfp10 A: single plant of 93-11 and sfp10 at filling stage; B: I2-KI staining of pollen grains of 93-11 and sfp10; C: comparison of pollen number and pollen fertility between 93-11 and sfp10, **: P < 0.01. D: spikelet and grains of single panicle of 93-11 and sfp10 at mature stage (above: solid grains; below: empty grains)."

Table 1

Comparison of major agronomic traits between the wild type 93-11 and the mutant sfp10"

性状
Trait
野生型93-11
Wild type 93-11
突变体sfp10
sfp10 mutant
相比93-11
Compared with 93-11 (%)
株高Plant height (cm) 109.10±4.75 111.10±4.23 1.83
分蘖数Tiller number 5.00±1.81 4.35±0.93 -13.00
剑叶长Swordleaf length (cm) 37.60±1.36 38.63±2.01 2.49
剑叶宽Swordleaf width (cm) 1.39±0.06 1.38±0.07 -0.72
生物产量Biological yield (g) 29.88±7.71 21.27±7.27 -28.81**
经济产量Economic yield (g) 12.37±3.26 7.98±2.74 -35.47**
结实率Seed setting rate (%) 92.84±2.65 59.34±8.79 -36.09**
千粒重1000-grain weight (g) 29.63±2.09 25.60±2.43 -13.58**
主穗粒数Grain number per panicle 131.15±20.08 60.40±11.86 -53.95**

Fig. 2

Traits of the late-development pollen in wild type 93-11 and mutant sfp10 by SEM A, B: pollen grains at the stage 6 of pollen development in 93-11 and sfp10, respectively; C, D: pollen grains at the stage 7 of pollen development in 93-11 and sfp10, respectively; E, F: pollen grains at the stage 8 of pollen development in 93-11 and sfp10, respectively; G: pollen grain lengths of 93-11 and sfp10; H: pollen grain widths of 93-11 and sfp10. S6 and S7, S8 respectively pollen development stage 6, 7, 8. **: P < 0.01."

Table S2

Morphology analysis of normal pollen grain morphology in 93-11 and sfp10"

时期
Stage
花粉长度Pollen grain length (µm) 花粉宽度Pollen grain width (µm)
93-11 sfp10 93-11 sfp10
六期
Stage 6
32.9 30.8 31.2 29.3
32.2 32.7 29.8 29.0
32.0 31.2 29.2 28.5
PP-value 0.28 0.15
七期
Stage 7
39.9 40.7 38.8 37.4
40.4 39.9 39.1 38.9
40.2 37.7 39.8 38.7
PP-value 0.46 0.18
八期
Stage 8
39.3 44.3 38.7 43.7
44.1 43.1 43.2 42.6
44.6 43.6 45.3 42.2
PP-value 0.59 0.84

Fig. 3

Physiological indexes relating pollen development of wild type 93-11 and mutant sfp10 A: proline content in anthers of 93-11 and the sfp10; B: starch content in anthers of 93-11 and the spf10; C-F: sucrose content of source-leaves (C), sink-leaves (D), stem (E), panicle (F) of 93-11 and sfp10. 1: booting stage; 2: heading stage; 3: flowering stage; 4: filling period; **: P < 0.01."

Table 2

Genetic analysis of sfp10 locus"

组合
Combination
F2 χ²(3:1) χ²0.05
野生型株数 No. of wild type plants 突变型株数 No. of mutant type plants
Sfp10/93-11 297 210 72.03 3.84
93-11/Sfp10 439 47 60.09
合计Total 736 257 0.37

Fig. 4

Gene primary mapping of sfp10 mutant A: sfp10 was located in the interval of 11.91 Mb on chromosome 10; B: sfp10 was located in the interval of 1.79 Mb; C: sfp10 was located in the interval of 398 kb; D: 31 genes was predicted in the localization interval."

Fig. 5

Information analysis of genes in positioning interval of mutant sfp10 A: GO enrichment of genes in the localization interval of mutant sfp10; B: KEEG enrichment of genes in positioning interval of mutant sfp10."

Table 3

Gene ID and function annotation of main candidate genes"

参与过程
Participation process
基因名称
Gene name
基因注释
Gene annotation
氨基酸合成与代谢
Amino acid synthesis and metabolism
Os10g0405100 Similar to serine/threonine-protein kinase NAK
Os10g0400100 Methionyl-tRNA synthetase, class Ia domain containing protein
Os10g0406300 Ascorbate oxidase promoter-binding protein
Os10g0400800 Similar to phenylalanyl-tRNA synthetase alpha chain
蔗糖转运
Sucrose transport
Os10g0404500 Similar to sucrose transporter
Os10g0404533 Similar to sucrose transport protein SUT3
Os10g0404566 Similar to sucrose transporter
淀粉合成Starch synthesis Os10g0390500 Starch synthesis in developing seeds
[1] Ren D Y, Li Y F, He G H, Qian Q. Multifloret spikelet improves rice yield. New Phytol, 2020, 225: 2301-2306.
doi: 10.1111/nph.16303 pmid: 31677165
[2] Lin H, Yu J, Pearce S P, Zhang D B. Rice anther net: a gene co-expression network for identifying anther and pollen development genes. Plant J, 2017, 92: 1076-1091.
doi: 10.1111/tpj.13744
[3] 冯九焕, 卢永根, 刘向东, 徐雪宾. 水稻花粉发育过程及其分期. 中国水稻科学, 2001, 15: 21-28.
Feng J H, Lu Y G, Liu X D, Xu X B. Pollen development and its stages in rice (Oryza sativa L.). Chin J Rice Sci, 2001, 15: 21-28 (in Chinese with English abstract).
[4] Borg M, Brownfield L, Twell D. Male gametophyte development: a molecular perspective. J Exp Bot, 2009, 60: 1465-1478.
doi: 10.1093/jxb/ern355 pmid: 19213812
[5] Hamilton D A, Mascarenhas J P. Gene expression during pollen development. In: Shivanna K R, Shivanna K R, Sawhney V K, eds. Pollen Biotechnology for Crop Production and Improvement. Cambridge: Cambridge UP, 1997. pp 40-58.
[6] Lee S K, Eom J S, Hwang S K, Shin D, An G, Okita T W, Jeon J S. Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility. J Exp Bot, 2016, 67: 5557-5569.
doi: 10.1093/jxb/erw324
[7] Li T, Gong C Y, Wang T. RA68 is required for postmeiotic pollen development in Oryza sativa. Plant Mol Biol, 2010, 72: 265-277.
doi: 10.1007/s11103-009-9566-y
[8] Cho J I, Ryoo N, Eom J S, Lee D W, Kim H B, Jeong S W, Lee Y H, Kwon Y K, Cho M H, Bhoo S H, Hahn T R, Park Y I, Hwang I, Sheen J, Jeon J S. Role of the rice hexokinases OsHXK5 and OsHXK6 as glucose sensors. Plant Physiol, 2009, 149: 745-759.
doi: 10.1104/pp.108.131227
[9] Datta R, Chamusco K C, Chourey P S. Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiol, 2002, 130: 1645-1656.
doi: 10.1104/pp.006908 pmid: 12481048
[10] Tetlow I J, Morell M K, Emes M J. Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot, 2004, 55: 2131-2145.
doi: 10.1093/jxb/erh248 pmid: 15361536
[11] Hu Z, Tang Z, Zhang Y, Niu L, Yang F, Zhang D, Hu Y. Rice SUT and SWEET Transporters. Int J Mol Med, 2021, 22: 11198.
[12] Wu Y, Fang W, Peng W, Jiang M, Chen G, Xiong F. Sucrose transporter in rice. Plant Signal Behav, 2021, 16: 1952373.
[13] David M B. SWEET! The pathway is complete. Science, 2012, 335: 173-174.
doi: 10.1126/science.1216828 pmid: 22246760
[14] Karrer E E, Rodriguez R L. Metabolic regulation of rice α-amylase and sucrose synthase genes in planta. Plant J, 1992, 2: 517-523.
pmid: 1344888
[15] Long W, Dong B, Wang Y, Pan P, Wang Y, Liu L, Chen X, Liu X, Liu S, Tian Y, Chen L, Wan J. FLOURY ENDOSPERM8 encoding the UDP-glucose pyrophosphorylase 1, affects the synthesis and structure of starch in rice endosper. J Plant Biol, 2017, 60: 513-522.
doi: 10.1007/s12374-017-0066-3
[16] Tang X J, Peng C, Zhang J, Cai Y, You X M, Kong F, Yan H G, Wang G X, Wang L, Jin J, Chen W W, Chen X G, Ma J, Wang P, Jiang L, Zhang W W, Wan J M. ADP-glucose pyrophosphorylase large subunit 2 is essential for storage substance accumulation and subunit interactions in rice endosperm. Plant Sci, 2016, 249: 70-83.
doi: 10.1016/j.plantsci.2016.05.010
[17] 贺和初. 滇1型和BT型杂交稻育性遗传和不育机理研究. 云南农业大学学报, 1988, (1): 54-68.
He H C. A preliminary study on the fertility inheritance and male sterile mechanism of hybrid rice of Dian 1 type and BT type. J Yunnan Agric Univ, 1988, (1): 54-68. (in Chinese with English abstract)
[18] Li W, Jiang L, Zhou S, Wang C, Liu L, Chen L, Ikehashi H, Wan J M. Fine mapping of pss1, a pollen semi-sterile gene in rice (Oryza sativa L.). Theor Appl Genet, 2007, 114: 939-946.
doi: 10.1007/s00122-006-0491-z
[19] Li S C, Li W, Huang B, Cao X, Zhou X, Ye S, Li C, Gao F, Zou T, Xie K, Ren Y, Ai P, Tang Y, Li X, Deng Q, Wang S, Zheng A, Zhu J, Liu H, Wang L, Li P. Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth. Nat Commun, 2013, 4: 1-13.
[20] 李利军, 孔红星, 陆丹梅. 蒽酮-硫酸法快速测定蔗糖的研究及应用. 食品工业科技, 2003, (10): 145-149.
Li L J, Kong H X, Lu D M. Study and application of rapid determination of sucrose by anthrone colorimetric method. Sci Technol Food Ind, 2003, (10): 145-149. (in Chinese)
[21] Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69-76.
doi: 10.1007/BF00020088 pmid: 24306565
[22] 汪结明, 张建, 江海洋, 朱苏文, 范军, 程备久. RNA干扰水稻SBE3基因的表达对籽粒淀粉合成及其关键酶活性的影响. 作物学报, 2010, 36: 313-320.
doi: 10.3724/SP.J.1006.2010.00313
Wang J M, Zhang J, Jiang H Y, Zhu S W, Fan J, Cheng B J. Effects of RNA interference of SBE3 gene expression on starch accumulation and key enzymes activities involved in starch synthesis in transgenic rice grain. Acta Agron Sin, 2010, 36: 313-320. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00313
[23] Tappiban P, Ying Y, Xu F, Bao J. Proteomics and post- translational modifications of starch biosynthesis-related proteins in developing seeds of rice. Int J Mol Med, 2021, 22: 1-25.
[24] Hirose T, Zhang Z, Miyao A, Hirochika H, Ohsugi R, Terao T. Disruption of a gene for rice sucrose transporter, OsSUT1, impairs pollen function but pollen maturation is unaffected. J Exp Bot, 2010, 61: 3639-2646.
doi: 10.1093/jxb/erq175
[25] He Z Y, Zou T, Xiao Q, Yuan G Q, Liu M M, Tao Y, Zhou D, Zhang X, Deng Q, Wang S Q, Zheng A, Zhu J, Liang Y, Yu X, Wang A, Liu H, Wang L X, Li P, Li S C. An L-type lectin receptor-like kinase promotes starch accumulation during rice pollen maturation. Development, 2021, 148: 1-16.
doi: 10.1242/dev.200265
[26] Peng X, Wang M, Li Y, Yan W, Chang Z, Chen Z, Xu C, Yang C, Deng X W, Wu J, Tang X. Lectin receptor kinase OsLecRK-S.7 is required for pollen development and male fertility. Int J Mol Med, 2020, 62: 1227-1245.
[27] Wang B, Fang R, Zhang J, Han J, Chen F, He F, Liu Y G, Chen L. Rice LecRK5 phosphorylates a UGPase to regulate callose biosynthesis during pollen development. J Exp Bot, 2020, 71: 4033-4041.
doi: 10.1093/jxb/eraa180 pmid: 32270203
[28] Zhang X, Zhao G C, Tan Q, Yuan H, Betts N, Zhu L, Zhang D, Liang W Q. Rice pollen aperture formation is regulated by the interplay between OsINP1 and OsDAF1. Nat Plants, 2020, 6: 394-403.
doi: 10.1038/s41477-020-0630-6 pmid: 32284546
[29] Mu H, Ke J H, Liu W, Zhuang C X, Yip W K. UDP-glucose pyrophosphorylase2 (OsUgp2), a pollen-preferential gene in rice, plays a critical role in starch accumulation during pollen maturation. Sci Bull, 2009, 54: 234-243.
doi: 10.1007/s11434-008-0568-y
[30] 陶龙兴, 王熹, 俞美玉, 黄效林. CM268诱导水稻雄性不育的效果及作用机理研究. 作物学报, 2001, 27: 178-184.
Tao L X, Wang X, Yu M Y, Huang X L. Bio-effects and mechanism of CM268 on inducing rice male sterility. Acta Agron Sin, 2001, 27: 178-184. (in Chinese with English abstract)
[31] Lehmann S, Funck D, Szabados L, Rentsch D. Proline metabolism and transport in plant development. Amino Acids, 2010, 39: 949-962.
doi: 10.1007/s00726-010-0525-3 pmid: 20204435
[32] Chen P F, Chen L, Jiang Z R, Wang G P, Wang S H, Ding Y F. Sucrose is involved in the regulation of iron deficiency responses in rice (Oryza sativa L.). Plant Cell Rep, 2018, 37: 789-798.
doi: 10.1007/s00299-018-2267-8
[33] Yang J, Kim S R, Lee S K, Choi H, Jeon J S, An G. Alanine aminotransferase 1 (OsAlaAT1) plays an essential role in the regulation of starch storage in rice endosperm. Plant Sci, 2015, 240: 79-89.
doi: 10.1016/j.plantsci.2015.07.027 pmid: 26475189
[34] Khan I, Khan S, Zhang Y, Zhou J. Genome-wide analysis and functional characterization of the Dof transcription factor family in rice (Oryza sativa L.). Planta, 2021, 253: 101.
doi: 10.1007/s00425-021-03627-y
[35] Hu Y, Li S L, Fan X, Song S, Zhou X, Weng X Y, Xiao J H, Li X H, Xiong L Z, You A Q, Xing Y Z. OsHOX1 and OsHOX28 redundantly shape rice tiller angle by reducing HSFA2D expression and auxin content. Plant Physiol, 2020, 184: 1424-1437.
doi: 10.1104/pp.20.00536
[36] Li Z, Ao Y, Feng D, Liu J, Wang J, Wang H B, Liu B. OsRLCK57, OsRLCK107 and OsRLCK118 positively regulate chitin- and PGN-induced immunity in rice. Rice, 2017, 10: 6-10.
doi: 10.1186/s12284-017-0145-6
[37] Vij S, Giri J, Dansana P K, Kapoor S, Tyagi A K. The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress. Mol Plant, 2008, 1: 732-750.
doi: 10.1093/mp/ssn047 pmid: 19825577
[1] ZHANG Chen-Hui, ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke, HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice [J]. Acta Agronomica Sinica, 2023, 49(4): 1039-1051.
[2] YAN Xin, XIANG Chao, LIU Rong, LI Guan, LI Meng-Wei, LI Zheng-Li, ZONG Xu-Xiao, YANG Tao. Fine mapping of flower colour gene in pea (Pisum sativum L) based on BSA-seq technique [J]. Acta Agronomica Sinica, 2023, 49(4): 1006-1015.
[3] TANG Wen-Qiang, ZHANG Wen-Long, ZHU Xiao-Qiao, DONG Bi-Zheng, LI Yong-Cheng, YANG Nan, ZHANG Yao, WANG Yun-Yue, HAN Guang-Yu. Effects of diverse mixture intercropping on the structure and function of   bacterial communities in rice rhizosphere [J]. Acta Agronomica Sinica, 2023, 49(4): 1111-1121.
[4] XIANG Si-Qian, LI Ru-Xiang, XU Guang-Yi, DENG Ke-Li, YU Jin-Jin, LI Miao-Miao, YANG Zheng-Lin, LING Ying-Hua, SANG Xian-Chun, HE Guang-Hua, ZHAO Fang-Ming. Identification and pyramid analysis of QTLs for grain size based on rice long-large-grain chromosome segment substitution line Z66 [J]. Acta Agronomica Sinica, 2023, 49(3): 731-743.
[5] LIU Li-Jun, ZHOU Shen-Qi, LIU Kun, ZHANG Wei-Yang, YANG Jian-Chang. Research progress on the formation of large panicles in rice and its regulation [J]. Acta Agronomica Sinica, 2023, 49(3): 585-596.
[6] ZHU Xiao-Tong, YE Ya-Feng, GUO Jun-Yao, YANG Hui-Jie, WANG Zi-Yao, ZHAN Yue, WU Yue-Jin, TAO Liang-Zhi, MA Bo-Jun, CHEN Xi-Feng, LIU Bin-Mei. Heredity and fine mapping of an early-senescence leaf gene ESL8 in rice [J]. Acta Agronomica Sinica, 2023, 49(3): 662-671.
[7] WU Dong-Qing, LI Zhou, GUO Chun-Lin, ZOU Jing-Nan, PANG Zi-Qin, LIN Fei-Fan, HE Hai-Bin, LIN Wen-Xiong. Dry matter partitioning properties and mechanism of ratooning rice and main crop (late season) synchronized in rice heading time [J]. Acta Agronomica Sinica, 2023, 49(3): 755-771.
[8] FU Jing, WANG Ya, YANG Wen-Bo, WANG Yue-Tao, LI Ben-Yin, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing. Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice [J]. Acta Agronomica Sinica, 2023, 49(3): 808-820.
[9] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[10] CAI Xiao-Xi, HU Bing-Shuang, SHEN Yang, WANG Yan, CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, SUN Xiao-Li. Effects of GsERF6 overexpression on salt-alkaline tolerance in rice [J]. Acta Agronomica Sinica, 2023, 49(2): 561-569.
[11] TAO Shi-Bao, KE Jian, SUN Jie, YIN Chuan-Jun, ZHU Tie-Zhong, CHEN Ting-Ting, HE Hai-Bing, YOU Cui-Cui, GUO Shuang-Shuang, WU Li-Quan. High-yielding population agronomic characteristics of middle-season indica hybrid rice with different panicle sizes in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2023, 49(2): 511-525.
[12] CHEN Sai-Hua, PENG Sheng, YOU Yi-Wen, ZHANG Lu-Yao, WANG Kai, XUE Ming, YANG Yuan-Zhu, WAN Jian-Min. Genetic analysis of photosensitivity divergence among hybrids derived from rice sterile line Xiangling 628S [J]. Acta Agronomica Sinica, 2023, 49(2): 332-342.
[13] YANG Xiao-Yi, WANG Hui-Hui, ZHANG Yan-Wen, HOU Dian-Yun, ZHANG Hong-Xiao, KANG Guo-Zhang, XU Hua-Wei. Function analysis of OsPIN5c gene by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2023, 49(2): 354-364.
[14] LI Zhao-Wei, MO Zu-Yi, SUN Cong-Ying, SHI Yu, SHANG Ping, LIN Wei-Wei, FAN Kai, LIN Wen-Xiong. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress [J]. Acta Agronomica Sinica, 2023, 49(2): 365-376.
[15] ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .