Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 647-661.doi: 10.3724/SP.J.1006.2023.23023
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
MA Ya-Jie1(), BAO Jian-Xi1(
), GAO Yue-Xin1, LI Ya-Nan1, QIN Wen-Xuan1, WANG Yan-Bo1, LONG Yan1, LI Jin-Ping2, DONG Zhen-Ying1,2,*(
), WAN Xiang-Yuan1,2,*(
)
[1] |
Prasanna B M. Diversity in global maize germplasm: characterization and utilization. J Biosci, 2012, 37: 843-855.
doi: 10.1007/s12038-012-9227-1 |
[2] |
Tang J H, Teng W T, Yan J B, Ma X Q, Meng Y J, Dai J R, Li J S. Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica, 2007, 155: 117-124.
doi: 10.1007/s10681-006-9312-3 |
[3] |
徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性. 作物学报, 2022, 48: 1526-1536.
doi: 10.3724/SP.J.1006.2022.13036 |
Xu T J, Zhang Y, Zhao J R, Wang R H, Lyu T F, Liu Y E, Cai W T, Liu H W, Chen C Y, Wang Y D. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting. Acta Agron Sin, 2022, 48: 1526-1536. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.13036 |
|
[4] |
崔爱民, 张久刚, 张虎, 单皓, 陈伟. 我国玉米生产现状及发展变革. 中国农业科技导报, 2020, 22(7): 10-19.
doi: doi:10.13304/j.nykjdb.2019.0508 |
Cui A M, Zhang J G, Zhang H, Shan H, Chen W. Preliminary exploration on current situation and development of maize production in China. J Agric Sci Technol, 2020, 22(7): 10-19. (in Chinese with English abstract) | |
[5] |
宋振伟, 齐华, 张振平, 钱春荣, 郭金瑞, 邓艾兴, 张卫建. 春玉米中单909农艺性状和产量对密植的响应及其在东北不同区域的差异. 作物学报, 2012, 38: 2267-2277.
doi: 10.3724/SP.J.1006.2012.02267 |
Song Z W, Qi H, Zhang Z P, Qian C R, Guo J R, Deng A X, Zhang W J. Effects of plant density on agronomic traits and yield in spring maize Zhongdan 909 and their regional differences in northeast China. Acta Agron Sin, 2012, 38: 2267-2277. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.02267 |
|
[6] |
Khush G S. Green revolution: the way forward. Nat Rev Genet, 2001, 2: 815-822.
doi: 10.1038/35093585 pmid: 11584298 |
[7] |
Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17: 385-403.
doi: 10.1007/BF00056241 |
[8] |
Salas Fernandez M G, Becraft P W, Yin Y H, Lübberstedt T. From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci, 2009, 14: 454-461.
doi: 10.1016/j.tplants.2009.06.005 pmid: 19616467 |
[9] |
郑德波, 杨小红, 李建生, 严建兵, 张士龙, 贺正华, 黄益勤. 基于SNP标记的玉米株高及穗位高QTL定位. 作物学报, 2013, 39: 549-556.
doi: 10.3724/SP.J.1006.2013.00549 |
Zheng D B, Yang X H, Li J S, Yan J B, Zhang S L, He Z H, Huang Y Q. QTL identification for plant height and ear height based on SNP mapping in maize (Zea mays L.). Acta Agron Sin, 2013, 39: 549-556. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00549 |
|
[10] | 薛军, 王克如, 谢瑞芝, 勾玲, 张旺锋, 明博, 侯鹏, 李少昆. 玉米生长后期倒伏研究进展. 中国农业科学, 2018, 51: 1845-1854. |
Xue J, Wang K R, Xie R Z, Gou L, Zhang W F, Ming B, Hou P, Li S K. Research progress of maize lodging during late stage. Sci Agric Sin, 2018, 51: 1845-1854 (in Chinese with English abstract). | |
[11] | 刘忠祥, 杨梅, 殷鹏程, 周玉乾, 何海军, 邱法展. 玉米株高主效QTL qPH3.2精细定位及遗传效应分析. 作物学报, 2018, 44: 1357-1366. |
Liu Z X, Yang M, Yin P C, Zhou Y Q, He H J, Qiu F Z. Fine mapping and genetic effect analysis of a major QTL qPH3.2 associated with plant height in maize (Zea mays L.). Acta Agron Sin, 2018, 44: 1357-1366. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01357 |
|
[12] |
刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定. 作物学报, 2022, 48: 886-895.
doi: 10.3724/SP.J.1006.2022.13026 |
Liu L, Zhan W M, Ding W S, Liu T, Cui L H, Jiang L L, Zhang Y P, Yang J P. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize. Acta Agron Sin, 2022, 48: 886-895. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.13026 |
|
[13] | 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析. 作物学报, 2022, 48: 138-150. |
Yu R S, Tian X K, Liu B B, Duan Y X, Li T, Zhang X Y, Zhang X H, Hao Y C, Li Q, Xue J Q, Xu S T. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize. Acta Agron Sin, 2022, 48: 138-150. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.03072 |
|
[14] |
Beavis W D, Grant D, Albertsen M, Fincher R. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet, 1991, 83: 141-145.
doi: 10.1007/BF00226242 pmid: 24202349 |
[15] |
Yan J B, Tang H, Huang Y Q, Shi Y G, Li J S, Zheng Y L. Dynamic analysis of QTL for plant height at different developmental stages in maize (Zea mays L.). Chin Sci Bull, 2003, 48: 2601-2607.
doi: 10.1360/03wc0044 |
[16] |
Weng J F, Xie C X, Hao Z F, Wang J J, Liu C L, Li M S, Zhang D G, Bai L, Zhang S H, Li X H. Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS One, 2011, 6: e29229.
doi: 10.1371/journal.pone.0029229 |
[17] | Bai W, Zhang H, Zhang Z, Teng F, Wang L, Tao Y, Zheng Y. The evidence for non-additive effect as the main genetic component of plant height and ear height in maize using introgression line populations. Plant Breed, 2009, 129: 376-384. |
[18] |
Vanous A, Gardner C, Blanco M, Blanco M, Schwarze A M, Lipka A E, Garcia S F, Bohn M, Edward J, Lübberstedt T. Association mapping of flowering and height traits in germplasm enhancement of maize doubled haploid (GEM-DH) lines. Plant Genome, 2018, 11: 170083.
doi: 10.3835/plantgenome2017.09.0083 |
[19] |
Wang B B, Liu H, Liu Z P, Dong X M, Guo J J, Li W, Chen J, Gao C, Zhu Y B, Zheng X M, Chen Z L, Chen J, Song W B, Hauck A, Lai J S. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). BMC Plant Biol, 2018, 18: 17.
doi: 10.1186/s12870-018-1233-5 pmid: 29347909 |
[20] | 刘坤, 张雪海, 孙高阳, 闫鹏帅, 郭海平, 陈思远, 薛亚东, 郭战勇, 谢惠玲, 汤继华, 李卫华. 玉米株型相关性状的全基因组关联分析. 中国农业科学, 2018, 51: 821-834. |
Liu K, Zhang X H, Sun G Y, Yan P S, Guo H P, Chen S Y, Xue Y D, Guo Z Y, Xie H L, Tang J H, Li W H. Genome-wide association studies of plant type traits in maize. Sci Agric Sin, 2018, 51: 821-834. (in Chinese with English abstract) | |
[21] |
Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on a progeny mean basis. Crop Sci, 1985, 25: 192-194.
doi: 10.2135/cropsci1985.0011183X002500010046x |
[22] |
Chen D H, Ronald P C. A rapid DNA minipreparation method suitable for AFLP and other PCR application. Plant Mol Biol Rep, 1999, 17: 53-57.
doi: 10.1023/A:1007585532036 |
[23] |
Tian H L, Wang F G, Zhao J R, Yi H M, Wang L, Wang R. Yang Y, Song W. Development of maize SNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties. Mol Breed, 2015, 35: 136.
doi: 10.1007/s11032-015-0335-0 |
[24] |
Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.
doi: 10.1093/genetics/155.2.945 pmid: 10835412 |
[25] | Liu X L, Huang M, Fan B, Buckler E S, Zhang Z W. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet, 2016, 12: e1005767. |
[26] |
Wang M, Yan J B, Zhao J R, Song W, Zhang X B, Xiao Y N, Zheng Y L. Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci, 2012, 196: 125-131.
doi: 10.1016/j.plantsci.2012.08.004 pmid: 23017907 |
[27] | 贺建波, 刘方东, 邢光南, 王吴彬, 赵团结, 管荣展, 盖钧镒. 限制性两阶段多位点全基因组关联分析方法的特点与计算程序. 作物学报, 2018, 44: 1274-1289. |
He J B, Liu F D, Xing G N, Wang W B, Zhao T J, Guan R Z, Gai J Y. Characterization and analytical programs of the restricted two-stage multi-locus genome-wide association analysis. Acta Agron Sin, 2018, 44: 1274-1289 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.01274 |
|
[28] |
Li X P, Zhou Z J, Ding J Q, Wu Y B, Zhou B, Wang R X, Ma J L, Wang S W, Zhang X C, Xia Z L, Chen J F, Wu J Y. Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Front Plant Sci, 2016, 7: 833.
doi: 10.3389/fpls.2016.00833 pmid: 27379126 |
[29] | 李博, 张焕欣, 杨小艳, 吕颖颖, 江培顺, 郝转芳, 吕香玲, 王宏伟, 翁建峰. 玉米穗位高全基因组关联分析及其候选基因预测. 作物杂志, 2013, (2): 27-32. |
Li B, Zhang H X, Yang X Y, Lyu Y Y, Jiang P S, Hao Z F, Lyu X L, Wang H W, Weng J F. Genome-wide association study and candidate gene prediction of ear height in maize (Zea mays L.). Crops, 2013, (2): 27-32. (in Chinese with English abstract) | |
[30] |
张焕欣, 翁建峰, 张晓聪, 刘昌林, 雍洪军, 郝转芳, 李新海. 玉米穗行数全基因组关联分析. 作物学报, 2014, 40: 1-6.
doi: 10.3724/SP.J.1006.2014.00001 |
Zhang H X, Weng J F, Zhang X C, Liu C L, Yong H J, Hao Z F, Li X H. Genome-wide association analysis of kernel row number in maize. Acta Agron Sin, 2014, 40: 1-6. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00001 |
|
[31] |
Pandis N. Linear regression. Am J Orthod Dentofac, 2016, 149: 431-434.
doi: 10.1016/j.ajodo.2015.11.019 pmid: 26926032 |
[32] | 袁亮, 孟鑫, 汪亚龙, 廖长见, 李高科, 吕桂华, 宋军, 邱正高, 林海建. 镉胁迫下甜、糯玉米开花期性状的全基因组关联分析. 植物遗传资源学报, 2021, 22: 438-447. |
Yuan L, Meng X, Wang Y L, Liao C J, Li G K, Lyu G H, Song J, Qiu Z G, Lin H J. Genome wide association analysis of flowering traits in sweet and waxy maize under cadmium stress. J Plant Genet Resour, 2021, 22: 438-447 (in Chinese with English abstract). | |
[33] | 马雅杰, 高悦欣, 李依萍, 龙艳, 董振营, 万向元. 玉米株高和穗位高的遗传基础与分子机制. 中国生物工程杂志, 2021, 41(12): 61-73. |
Ma Y J, Gao Y X, Li Y P, Long Y, Dong Z Y, Wan X Y. Progress on genetic analysis and molecular dissection on maize plant height and ear height. China Biotechnol, 2021, 41(12): 61-73. (in Chinese with English abstract) | |
[34] |
Ertiro B T, Labuschagne M, Olsen M, Das B, Prasanna B M, Gowda M. Genetic dissection of nitrogen use efficiency in tropical maize through genome-wide association and genomic prediction. Front Plant Sci, 2020, 11: 474.
doi: 10.3389/fpls.2020.00474 pmid: 32411159 |
[35] | Zhu C, Gore M, Buckler E S, Yu J M. Status and prospects of association mapping in plants. Plant Genome, 2008, 1: 5-20. |
[36] |
An Y X, Chen L, Li Y X, Li C H, Shi Y S, Zhang D F, Li Y, Wang T Y. Genome-wide association studies and whole-genome prediction reveal the genetic architecture of KRN in maize. BMC Plant Biol, 2020, 20: 490.
doi: 10.1186/s12870-020-02676-x pmid: 33109077 |
[37] |
Zhang Y, Wan J Y, He L, Lan H, Li L J. Genome-wide association analysis of plant height using the maize F1 population. Plants (Basel), 2019, 8: 432.
doi: 10.3390/plants8100432 |
[38] |
渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构. 作物学报, 2022, 48: 304-319.
doi: 10.3724/SP.J.1006.2022.13002 |
Qu J Z, Feng W H, Zhang X H, Xu S T, Xue J Q. Dissecting the genetic architecture of maize kernel size based on genome-wide association study. Acta Agron Sin, 2022, 48: 304-319. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.13002 |
|
[39] |
Zhao Y, Wang H S, Bo C, Dai W, Zhang X G, Cai R H, Gu L J, Ma Q, Jiang H Y, Zhu J, Cheng B J. Genome-wide association study of maize plant architecture using F1 populations. Plant Mol Biol, 2019, 99: 1-15.
doi: 10.1007/s11103-018-0797-7 |
[40] |
Zhou Z Q, Zhang C S, Lu X H, Wang L W, Hao Z F, Li M S, Zhang D G, Yong H J, Zhu H Y, Weng J F, Li X H. Dissecting the genetic basis underlying combining ability of plant height related traits in maize. Front Plant Sci, 2018, 9: 1117.
doi: 10.3389/fpls.2018.01117 pmid: 30116252 |
[41] | 杨晓军, 路明, 张世煌, 周芳, 曲延英, 谢传晓. 玉米株高和穗位高的QTL定位. 遗传, 2008, 30: 1477-1486. |
Yang X J, Lu M, Zhang S H, Zhou F, Qu Y Y, Xie C X. QTL mapping of plant height and ear position in maize (Zea mays L.). Hereditas (Beijing), 2008, 30: 1477-1486. (in Chinese with English abstract) | |
[42] |
Zhang Z M, Zhao M J, Ding H P, Rong T Z, Pan G T. Quantitative trait loci analysis of plant height and ear height in maize (Zea mays L.). Russ J Genet, 2006, 42: 306-310.
doi: 10.1134/S1022795406030112 |
[43] |
Hu S L, Wang C L, Sanchez D L, Lipka A E, Liu P, Yin Y H, Blanco M, Lübberstedt T. Gibberellins promote brassinosteroids action and both increase heterosis for plant height in maize (Zea mays L.). Front Plant Sci, 2017, 8: 1039.
doi: 10.3389/fpls.2017.01039 |
[44] |
Tang Z X, Yang Z F, Hu Z Q, Zhang D, Lu X, Jia B, Deng D X, Xu C W. Cytonuclear epistatic quantitative trait locus mapping for plant height and ear height in maize. Mol Breed, 2013, 31: 1-14.
doi: 10.1007/s11032-012-9762-3 |
[45] |
Liu H J, Wang X Q, Xiao Y J, Luo J Y, Qiao F, Yang W Y, Zhang R Y, Meng Y J, Sun J M, Yan S J, Peng Y, Niu L Y, Jian L M, Song W, Yan J L, Li C H, Zhao Y X, Liu Y, Warburton M L, Zhao J R, Yan J B. CUBIC: an atlas of genetic architecture promises directed maize improvement. Genome Biol, 2020, 21: 20.
doi: 10.1186/s13059-020-1930-x |
[46] |
Dell’Acqua M, Gatti D M, Pea G, Cattonaro F, Coppens F, Magris G, Hlaing A L, Aung H H, Nelissen H, Baute J, Frascaroli E, Churchill G A, Inzé D, Morgante M, Pè M E. Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biol, 2015, 16: 167.
doi: 10.1186/s13059-015-0716-z |
[47] |
Park K J, Sa K J, Kim B W, Koh H J, Lee J K. Genetic mapping and QTL analysis for yield and agronomic traits with an F2:3population derived from a waxy corn × sweet corn cross. Genes Genom, 2014, 36: 179-189.
doi: 10.1007/s13258-013-0157-6 |
[48] |
Pan Q C, Xu Y C, Li K, Peng Y, Zhan W, Li W Q, Li L, Yan J B. The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiol, 2017, 175: 858-873.
doi: 10.1104/pp.17.00709 pmid: 28838954 |
[49] |
Li Y L, Dong Y B, Niu S Z, Cui D Q. The genetic relationship among plant-height traits found using multiple-trait QTL mapping of a dent corn and popcorn cross. Genome, 2007, 50: 357-364.
pmid: 17546094 |
[50] | 李卫华. 玉米多种抗病基因的分子聚合育种. 中国科学院遗传与发育生物学研究所博士学位论文, 北京, 2008. |
Li W H. Pyramiding Breeding of Resistance Genes to Maize Diseases with Marker-assisted Selection. PhD Dissertation of Institute of Genetics and Developmental Biology, Chinese Academy of Sciences,Beijing, China, 2008 (in Chinese with English abstract). | |
[51] |
Xu X Z, Wan W, Jiang G B, Xi Y, Huang H J, Cai J J, Chang Y N, Duan C G, Mangrauthia S K, Peng X X, Zhu J K, Zhu G H. Nucleocytoplasmic trafficking of the Arabidopsis WD40 repeat protein XIW1 regulates ABI5 stability and abscisic acid responses. Mol Plant, 2019, 12: 1598-1611.
doi: 10.1016/j.molp.2019.07.001 |
[52] | 戚义东, 秦华, 高雅迪, 王芳芳, 黄荣峰, 权瑞党. 脱落酸拮抗赤霉素抑制水稻地上部生长的研究. 生物技术进展, 2019, 9: 483-489. |
Qi Y D, Qin H, Gao Y D, Wang F F, Huang R F, Quan R D. Study on antagonizing regulation of shoot growth by abscisic acid and gibberellic acid in rice. Curr Biotech, 2019, 9: 483-489. (in Chinese with English abstract) | |
[53] |
Russin W A, Evert R F, Vanderveer P J, Sharkey T D, Briggs S P. Modification of a specific class of plasmodesmata and loss of sucrose export ability in the sucrose export defective1 maize mutant. Plant Cell, 1996, 8: 645-658.
doi: 10.2307/3870341 |
[54] | 覃碧. 泛素蛋白酶体途径及其对植物激素信号转导的调控. 热带农业科学, 2013, 33: 39-45. |
Qin B. Ubiquitin-proteasome pathway and its regulation of plant hormone signaling. Chin J Trop Agric, 2013, 33: 39-45. (in Chinese with English abstract) | |
[55] | 冯玥. 棉花岩藻糖基转移酶家族基因(FucT)的发掘和FucT4功能初步分析. 南京农业大学博士学位论文, 江苏南京, 2016. |
Feng Y. Genome-wide Identification of Fucosyltransferase (FucT) Gene Family and Functional Analysis of FucT4 in Cotton. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2016. (in Chinese with English abstract) | |
[56] |
Skirycz A, Radziejwoski A, Busch W, Hannah M A, Czeszejko J, Kwasniewski M, Zanor M I, Lohmann J U, Veylder L D, Witt I, Roeber B M. The DOF transcription factor OBP1 is involved in cell cycle regulation in Arabidopsis thaliana. Plant J, 2008, 56: 779-792.
doi: 10.1111/j.1365-313X.2008.03641.x |
[57] | 王凯. 拟南芥和水稻CPP转录因子家族的生物信息学分析. 生物技术通报, 2010, (2): 76-84. |
Wang K. Bioinformatic analysis of the CPP transcription factors family in Arabidopsis and rice. Biotech Bull, 2010, (2): 76-84. (in Chinese with English abstract) | |
[58] |
何亮, 李富华, 沙莉娜, 付凤玲, 李晚忱. 玉米2C型丝氨酸/苏氨酸蛋白磷酸酶(PP2C)活性与耐旱性的关系. 作物学报, 2008, 34: 899-903.
doi: 10.3724/SP.J.1006.2008.00899 |
He L, Li F H, Sha L N, Fu F L, Li W C. Activity of serine/threonine protein phosphatase type-2C (PP2C) and its relationships to drought tolerance in maize. Acta Agron Sin, 2008, 34: 899-903. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.00899 |
|
[59] | 卫卓赟, 黎家. 受体激酶介导的油菜素内酯信号转导途径. 生命科学, 2011, 23: 1106-1113. |
Wei Z Y, Li J. Receptor kinases mediated brassinosteroid signal transduction in plants. Chin Bull Life Sci, 2011, 23: 1106-1113. (in Chinese with English abstract) | |
[60] |
Kir G, Ye H X, Nelissen H, Neelakandan A K, Kusnandar A S, Luo A, Inzé D, Sylvester A W, Yin Y H, Becraft P W. RNA interference knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiol, 2015, 169: 826-839.
doi: 10.1104/pp.15.00367 |
[1] | ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892. |
[2] | ZHU Zhi, LI Long, LI Chao-Nan, MAO Xin-Guo, HAO Chen-Yang, ZHU Ting, WANG Jing-Yi, CHANG Jian-Zhong, JING Rui-Lian. Transcription factor TaMYB5-3B is associated with plant height and 1000-grain weight in wheat [J]. Acta Agronomica Sinica, 2023, 49(4): 906-916. |
[3] | LUAN Yi, BAI Yan, LU Shi, LI Lei-Xin, WANG De-Qiang, GAO Ting-Ting, SHI Jie, YANG Hong-Ming, LU Ming. Multi-disease resistance evaluation of spring maize varieties for the national regional test in Northeast and North China during 2016–2020 [J]. Acta Agronomica Sinica, 2023, 49(4): 1122-1131. |
[4] | WU Xi, WANG Jia-Rui, HAO Miao-Yi, ZHANG Hong-Jun, ZHANG Ren-He. Effects of planting density on solar and heat resource utilization and yield of maize varieties at different growth stages [J]. Acta Agronomica Sinica, 2023, 49(4): 1065-1078. |
[5] | XU Jia-Bo, WU Peng-Hao, HUANG Bo-Wen, CHEN Zhan-Hui, MA Yue-Hong, REN Jiao-Jiao. QTL locating and genomic selection for tassel-related traits using F2:3 lineage haploids [J]. Acta Agronomica Sinica, 2023, 49(3): 622-633. |
[6] | LIU Yue, MING Bo, LI Yao-Yao, WANG Ke-Ru, HOU Peng, XUE Jun, LI Shao-Kun, XIE Rui-Zhi. Analysis on high yield planting density of spring maize in Northeast China from root and shoot coordinated development [J]. Acta Agronomica Sinica, 2023, 49(3): 795-807. |
[7] | LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844. |
[8] | FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783. |
[9] | DENG Zhao, JIANG Huan-Qi, CHENG Li-Sha, LIU Rui, HUANG Min, LI Man-Fei, DU He-Wei. Identification of abiotic stress-related gene co-expression networks in maize by WGCNA [J]. Acta Agronomica Sinica, 2023, 49(3): 672-686. |
[10] | YANG Jun-Fang, WANG Zhou, QIAO Lin-Yi, WANG Ya, ZHAO Yi-Ting, ZHANG Hong-Bin, SHEN DengGao, WANG HongWei, CAO Yue. QTL mapping of seed size traits based on a high-density genetic map in castor [J]. Acta Agronomica Sinica, 2023, 49(3): 719-730. |
[11] | SONG Jie, WANG Shao-Xiang, LI Liang, HUANG Jin-Ling, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2023, 49(2): 539-551. |
[12] | LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510. |
[13] | XU Tong, LYU Yan-Jie, SHAO Xi-Wen, GENG Yan-Qiu, WANG Yong-Jun. Effect of different times of spraying chemical regulator on the canopy structure and grain filling characteristics of high planting densities [J]. Acta Agronomica Sinica, 2023, 49(2): 472-484. |
[14] | YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320. |
[15] | YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391. |
|