Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 926-937.doi: 10.3724/SP.J.1006.2023.24080

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Genotypes screening and comprehensive evaluation of sweetpotato tolerant to low potassium stress at seedling stage

LIU Ming1,2(), FAN Wen-Jing1,3, ZHAO Peng1, JIN Rong1, ZHANG Qiang-Qiang1, ZHU Xiao-Ya1, WANG Jing1, LI Qiang1,2,*()   

  1. 1Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, Jiangsu, China
    2Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
    3College of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui, China
  • Received:2022-04-02 Accepted:2022-07-21 Online:2023-04-12 Published:2022-08-18
  • Contact: *E-mail: instrong@163.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-10);National Key Research and Development Program of China(2018YFD1000704);Key Research and Development Program of Jiangsu Province(BE2021311)

Abstract:

The purpose of this study was to establish a low potassium (K) tolerant evaluation system for sweetpotato at seedling stage and to screen sweetpotato materials with low-K-tolerant and low-K-sensitive. 214 sweetpotato varieties (lines) from domestic and abroad were cultured under low-K-stress (0 mmol L-1 K2O, LK) and normal K treatment (10 mmol L-1 K2O, CK) through a hydroponic experiment. 11 traits, such as biomass, K accumulation, K content, and K utilization efficiency were collected to calculate the low-K-stress tolerance index of each index. The low-K-tolerant ability of each sweetpotato material was comprehensively evaluated by principal component analysis (PCA), regression analysis, and cluster analysis. The results showed that the biomass and K uptake and utilization characteristics of different sweetpotato materials were different under two K levels. Under LK treatment, shoot biomass (SB), shoot biomass increase (SBI), root biomass increase (RBI), total biomass increase (PBI), K accumulation in shoot (KAS), K accumulation in root (KAR), K accumulation in plant (KAP), K concentration in shoot (KCS), and K concentration in root (KCR) decreased by more than 29% compared with CK, while root shoot ratio (RSR) and K physiological utilization efficiency (KUE) increased by 29.63% and 120.56%, respectively. Under LK treatment, the variation coefficients of SB, SBI, PBI, KAS, KAP, KCS, KCR, and KUE of different sweetpotato materials were higher than those of CK treatment. Principal component analysis was carried out on the low-K-stress tolerant index of 11 indexes. Three principal components (PC) were selected and the cumulative variance contribution rate was 82.86%. The low-K-tolerant index of 11 indicators was significantly correlated with the comprehensive evaluation value (Y) of low-K-tolerant. Selected SBI, RBI, PBI, KAS, KAR, KAP as screening evaluation indicators, 214 sweetpotato materials were divided into low-K-tolerant type, intermediate type and low-K-sensitive type according to cluster heat map analysis. The variance analysis showed that the low-K-tolerant varieties had higher low-K-stress tolerance index than other types of varieties, and the Y-value was also in the top, which verified the accuracy of the clustering results. Based on the results of this study, SBI, RBI, PBI, KAS, KAR, and KAP can be used as the first selection indexes for the screening of sweetpotato with different low-K-tolerance ability at seedling stage. Six genotypes with the strongest tolerance to low K at seedling stage were selected, which were Jizishu 18, Guangzishu 2, Longshu 710, Taizhong 6, Shenglibaihao, and Longshu 9.

Key words: sweetpotato, low-K-tolerant, variety screening, evaluation indicators

Table 1

Sweetpotato materials for test"

编号
Number
品种名称
Variety name
编号
Number
品种名称
Variety name
1 渝薯99 Yushu 99 108 宁紫薯1号 Ningzishu 1
2 渝红心薯8号 Yuhongxinshu 8 109 徐紫薯2号 Xuzishu 2
3 浙薯147 Zheshu 147 110 徐紫薯8号 Xuzishu 8
4 渝苏162 Yusu 162 111 徐紫薯6号 Xuzishu 6
5 浙薯6025 Zheshu 6025 112 绵紫薯9号 Mianzishu 9
6 渝苏153 Yushu 153 113 绵渝紫11 Mianyuzi 11
7 普薯32 Pushu 32 114 万紫薯56 Wanzishu 56
8 渝薯17 Yushu 17 115 鄂紫薯13 Ezishu 13
9 1399-2 116 鄂薯12 Eshu 12
10 S1-5 117 桂紫薯3号 Guizishu 3
11 福薯13 Fushu 13 118 福薯24号 Fushu 24
12 渝紫3号 Yuzi 3 119 川紫薯2号 Chuanzishu 2
13 江津乌苕尖 Jiangjinwutiaojian 120 桂经薯9号 Guijingshu 9
14 南薯007 Nanshu 007 121 商徐紫1号 Shangxuzi 1
15 渝薯2号 Yushu 2 122 吉徐紫2号 Jixuzi 2
16 龙薯9号 Longshu 9 123 徐紫薯3号 Xuzishu 3
17 济薯18 Jishu 18 124 渝紫7号 Yuzi 7
18 南薯012 Nanshu 012 125 彭紫薯3号 Pengzishu 3
19 苏薯1号 Sushu 1 126 渝紫263 Yuzi 263
20 二南苕/胜南苕 Ernantiao/Shengnanshao 127 徐紫薯5号 Xuzishu 5
21 济78268 Ji 78268 128 桂经薯6号 Guijingshu 6
22 徐22-5 Xu 22-5 129 桂经薯8号 Guijingshu 8
23 南薯15 Nanshu 15 130 南紫014 Nanzi 014
24 渝紫6号 Yuzi 6 131 南紫015 Nanzi 015
25 心香 Xinxiang 132 黔紫薯1号 Qianzishu 1
26 早秋 Zaoqiu 133 福宁紫3号 Funingzi 3
27 浙紫薯2号 Zhezishu 2 134 福宁紫4号 Funingzi 4
28 龙薯1号 Longshu 1 135 莆紫薯3号 Puzishu 3
29 徐17-10 Xu 17-10 136 莆紫薯18号 Puzishu 18
30 渝薯12 Yushu 12 137 济紫薯3号 Jizishu 3
31 南薯88 Nanshu 88 138 广紫薯9号 Guangzishu 9
32 1498-4 139 广紫薯10号 Guangzishu 10
33 浙薯81 Zheshu 81 140 广紫薯11号 Guangzishu 11
编号
Number
品种名称
Variety name
编号
Number
品种名称
Variety name
34 1375-11 141 广紫薯1号 Guangzishu 1
35 渝薯33 Yushu 33 142 广紫薯2号 Guangzishu 2
36 渝薯6号 Yushu 6 143 广紫薯8号 Guangzishu 8
37 商丘52-7 Shangqiu 52-7 144 济紫薯18号 Jizishu 18
38 浙菜薯726 Zhecaishu 726 145 绫紫 Lingzi
39 13104-2 146 泰紫1506 Taizi 1506
40 浙薯13 Zheshu 13 147 泰紫2014-04 Taizi 2014-04
41 万薯10号 Wanshu 10 148 韩紫 Hanzi
42 红香蕉 Hongxiangjiao 149 徐紫秧10号 Xuziyang 10
43 济薯29 Jishu 29 150 龙薯4号 Longshu 4
44 岩薯5号 Yanshu 5 151 防紫9号 Fangzi 9
45 浙255 Zhe 255 152 防薯9号 Fangshu 9
46 济10216 Ji 10216 153 广薯98 Guangshu 98
47 济农51 Jinong 51 154 广薯146 Guangshu 146
48 济农290 Jinong 290 155 广薯72 Guangshu 72
49 冀紫薯2号 Jizishu 2 156 金山17 Jinshan 17
50 南紫020 Nanzi 020 157 金山20 Jinshan 20
51 南紫018 Nanzi 018 158 金山57 Jinshan 57
52 川薯228 Chuanshu 228 159 秦薯8号 Qinshu 8
53 川薯294 Chuanshu 294 160 栗子香 Lizixiang
54 龙薯15 Longshu 15 161 烟薯25 Yanshu 25
55 龙薯601 Longshu 601 162 烟薯26 Yanshu 26
56 郑薯20 Zhengshu 20 163 烟台红 Yantaihong
57 泰中6号 Taizhong 6 164 福建连城 Fujianliancheng
58 鲁薯8号 Lushu 8 165 柬埔寨1号 Jianpuzhai 1
59 泰薯12号 Taishu 12 166 临高(半紫) Lingao (banzi)
60 万薯7号 Wanshu 7 167 日本黑 Ribenhei
61 泰薯14号 Taishu 14 168 赤几紫 Chijizi
62 徐薯32 Xushu 32 169 川薯20 Chuanshu 20
63 徐薯33 Xushu 33 170 福宁紫1号 Funingzi 1
64 徐渝薯34 Xuyushu 34 171 阜紫1号 Fuzi 1
65 徐渝薯35 Xuyushu 35 172 黄吉2号 Huangji 2
66 苏薯8号 Sushu 8 173 济黑 Jihei
67 安平1号 Anping 1 174 龙紫9号 Longzi 9
68 冰淇淋 Bingqilin 175 汝城小紫 Ruchengxiaozi
69 济薯26 Jishu 26 176 广薯87 Guangshu 87
70 岩薯5号 Yanshu 5 177 长塘黄 Changtanghuang
71 红优 Hongyou 178 黄吉1号 Huangji 1
72 胜利百号 Shenglibaihao 179 小桂紫微薯 Xiaoguiziweishu
73 苏薯22 Sushu 22 180 安哥拉1 Angela 1
74 苏薯25 Sushu 25 181 川薯1号 Chuanshu 1
75 川薯20 Chuanshu 20 182 鄂薯3号 Eshu 3
76 鄂薯11 E’shu 11 183 福317 Fu 317
77 赣渝3号 Ganyu 3 184 福薯26 Fushu 26
78 豫21-16 Yu 21-16 185 刚果布2号 Gangguobu 2
编号
Number
品种名称
Variety name
编号
Number
品种名称
Variety name
79 万9902-7 Wan 9902-7 186 广薯155 Guangshu 155
80 川薯220 Chuanshu 220 187 桂粉3号 Guifen 3
81 黔薯5号 Qianshu 5 188 红尾薯 Hongweishu
82 丹研红心薯Danyanhongxinshu 189 黄皮薯 Huangpishu
83 渝92-113-90 Yu 92-113-90 190 鸡蛋黄 Jidanhuang
84 渝5-2-48 Yu 5-2-48 191 冀薯98 Jishu 98
85 二郎苕 Erlangshao 192 九里香 Jiulixiang
86 绵9-6-3 Mian 9-6-3 193 六拾日 Liushiri
87 鲁薯18 Lushu 18 194 龙薯710 Longshu 710
88 宁4-6 Ning 4-6 195 秘鲁 Bilu
89 香苕 Xiangtiao 196 南充香种 Nanchongxiangzhong
90 南薯010 Nanshu 010 197 农岩7-3 Nongyan 7-3
91 福薯604 Fushu 604 198 青岛乐泉 Qingdaolequan
92 冀薯4 Jishu 4 199 泉薯10号 Quanshu 10
93 冀薯332 Jishu 332 200 泉薯830 Quanshu 830
94 湛薯12 Zhanshu 12 201 三明P355058 Sanming P35508
95 川1-60 Chuan 1-60 202 台农57 Tainong 57
96 龙紫薯6号 Longzishu 6 203 泰国 Taiguo
97 浙紫薯1号 Zhezishu 1 204 禺百红 Yubaihong
98 宁紫薯3号 Ningzishu 3 205 豫薯13 Yushu 13
99 济紫黑2号 Jizihei 2 206 湛薯16 Zhanshu 16
100 阜紫薯1号 Fuzishu 1 207 湛江橙 Zhanjiangcheng
101 泰中11号 Taizhong 11 208 湛薯118 Zhanshu 118
102 烟紫薯3号 Yanzishu 3 209 JY2 (日本红心品种) JY2 (Ribenhongxinpinzhong)
103 皖YW-36-1 Wan YW-36-1 210 浙紫5号 Zhezi 5
104 龙津薯3号 Longjinshu 3 211 大南伏 Dananfu
105 湛紫薯2号 Zhanzishu 2 212 浙薯70 Zheshu 70
106 烟紫薯2号 Yanzishu 2 213 宁紫6号 Ningzi 6
107 宁紫薯4号 Ningzishu 4 214 宜宾红心薯 Yibinhongxinshu

Table 2

Variation analysis of various characters of sweetpotato seedlings in different potassium levels"

指标
Index
正常钾处理 Normal K treatment (CK) 低钾处理Low-K-stress treatment (LK)
变幅
Range
均值
Mean
变异系数
CV (%)
变幅
Range
均值
Mean
变异系数
CV (%)
地上部干重Shoot biomass (g plant-1) 0.53-4.43 2.05 37.24 0.22-2.74 1.16 38.39
地上部干物质增加量Shoot biomass increase (g plant-1) 0.16-3.46 1.32 48.47 -0.87-1.36 0.16 246.61
根系干物质增加量Root biomass increase (g plant-1) 0.10-1.57 0.55 49.05 0.07-0.91 0.39 39.16
总干物质增加量Plant biomass increase (g plant-1) 0.33-4.85 1.87 45.78 -0.52-2.01 0.55 85.31
根冠比Root-shoot ratio 0.08-0.63 0.27 33.04 0.09-0.76 0.35 29.68
地上部钾积累量K accumulation in shoot (g plant-1) 0.09-1.22 0.46 49.49 0.01-0.23 0.05 64.63
根系钾积累量K accumulation in root (g plant-1) 0.02-0.70 0.22 58.05 0.00-0.08 0.02 52.97
总钾积累量K accumulation in plant (g plant-1) 0.14-1.83 0.67 48.60 0.02-0.23 0.08 53.92
地上部钾含量K concentration in shoot (%) 8.86-117.01 22.05 37.16 1.74-18.41 4.81 61.19
根系钾含量K concentration in root (%) 14.30-54.71 38.20 19.53 2.00-15.03 6.71 42.47
钾生理利用效率K physiological utilization efficiency (%) 0.55-5.51 2.87 22.35 -16.67-21.93 6.33 92.35

Table 3

Weighted coefficients, eigenvalues, variance contribution, and cumulative variance contribution of first three principal components based on 11 index"

指标
Index
主成分 Principal components
成分1 Factor 1 成分2 Factor 2 成分3 Factor 3
地上部干重 Shoot biomass 0.668 0.400 -0.230
地上部干物质增加量 Shoot biomass increase 0.769 -0.023 -0.494
根系干物质增加量 Root biomass increase 0.546 0.730 0.319
总干物质增加量 Plant biomass increase 0.893 0.245 -0.290
根冠比 Root-shoot ratio 0.059 0.549 0.682
地上部钾积累量 K accumulation in shoot 0.821 -0.456 -0.022
根系钾积累量 K accumulation in root 0.734 0.279 0.546
总钾积累量 K accumulation in plant 0.908 -0.289 0.176
地上部钾含量 K concentration in shoot 0.532 -0.743 0.112
根系钾含量 K concentration in root 0.489 -0.506 0.433
钾生理利用效率 K physiological utilization efficiency 0.396 0.445 -0.597
特征值 Eigenvalues 4.851 2.429 1.834
方差的贡献率 Variance contribution (%) 44.100 22.081 16.677
累积贡献率 Cumulative variance contribution (%) 44.100 66.181 82.858

Table 4

Correlation coefficient between 11 indexes of low-K-tolerance and the comprehensive value (Y)"

指标
Trait
相关系数
Correlation coefficient
P
P-value
地上部干重 Shoot biomass 0.696** 0.000
地上部干物质增加量 Shoot biomass increase 0.594** 0.000
根系干物质增加量 Root biomass increase 0.809** 0.000
总干物质增加量 Plant biomass increase 0.840** 0.000
根冠比 Root-shoot ratio 0.379** 0.000
地上部钾积累量 K accumulation in shoot 0.603** 0.000
根系钾积累量 K accumulation in root 0.883** 0.000
总钾积累量 K accumulation in plant 0.779** 0.000
地上部钾含量 K concentration in shoot 0.271** 0.000
根系钾含量 K concentration in root 0.378** 0.000
钾生理利用效率 K physiological utilization efficiency 0.382** 0.000

Fig. 1

Dendrogram of different sweetpotato genotypes based on low-K-tolerance SBI: shoot biomass increase; RBI: root biomass increase; PBI: plant biomass increase; KAS: K accumulation in shoot; KAR: K accumulation in root; KAP: K accumulation in plant."

Fig. 2

Comprehensive evaluation of agronomic traits of different sweetpotato with low-K-tolerance SB: shoot biomass; RSR: root-shoot ratio; KCS: K concentration in shoot; KCR: K concentration in root; KUE: K physiological utilization efficiency; SBI: shoot biomass increase; RBI: root biomass increase; PBI: plant biomass increase; KAS: K accumulation in shoot; KAR: K accumulation in root; KAP: K accumulation in plant."

[1] 王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 483-492.
Wang X, Li Q, Cao Q H, Ma D F. Current status and future prospective of sweetpotato production and seed industry in China. Sci Agric Sin, 2021, 54: 483-492 (in Chinese with English abstract).
[2] 张海燕, 董顺旭, 解备涛, 汪宝卿, 张立明, 段文学. 钾肥用量对瘠薄地甘薯产量和钾肥利用率的影响. 核农学报, 2020, 34: 2299-2306.
doi: 10.11869/j.issn.100-8551.2020.10.2299
Zhang H Y, Dong S X, Xie B T, Wang B Q, Zhang L M, Duan W X. Effects of amount of potassium fertilizer on yield and potassium utilization efficiency of sweetpotato in barren land. J Nucl Agric Sci, 2020, 34: 2299-2306. (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2020.10.2299
[3] 汪顺义, 李欢, 刘庆, 史衍玺. 施钾对甘薯根系生长和产量的影响及其生理机制. 作物学报, 2017, 43: 1057-1066.
doi: 10.3724/SP.J.1006.2017.01057
Wang S Y, Li H, Liu Q, Shi Y X. Effect of potassium application on root grow and yield of sweet potato and its physiological mechanism. Acta Agron Sin, 2017, 43: 1057-1066. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01057
[4] 唐忠厚, 张爱君, 陈晓光, 靳容, 刘明, 李洪民, 丁艳锋. 低钾胁迫对甘薯块根淀粉理化特性的影响及其基因型差异. 中国农业科学, 2017, 50: 513-525.
Tang Z H, Zhang A J, Chen X G, Jin R, Liu M, Li H M, Ding Y F. Starch physico-chemical properties and their difference in three sweetpotato (Ipomoea batatas (L.) Lam.) genotypes under low potassium stress. Sci Agric Sin, 2017, 50: 513-525. (in Chinese with English abstract)
[5] Wu J T, Zhang X Z, Li T X, Yu H Y, Huang P. Differences in the efficiency of potassium (K) uptake and use in barley varieties. Agric Sci China, 2011, 10: 101-108.
doi: 10.1016/S1671-2927(11)60312-X
[6] Wang J D, Wang H Y, Zhang Y C, Zhou J M, Chen X Q. Intraspecific variation in potassium uptake and utilization among sweet potato (Ipomoea batatas L.) genotypes. Field Crops Res, 2015, 170: 76-82.
doi: 10.1016/j.fcr.2014.10.007
[7] 吴宇佳, 张文, 符传良, 郑道君, 刘国彪, 谢良商. 不同钾效率基因型香蕉根际钾营养与根系特性研究. 生态环境学报, 2018, 27: 478-483.
Wu Y J, Zhang W, Fu C L, Zheng D J, Liu G B, Xie L S. Investigation of K nutrition in rhizosphere and characteristics of roots for different K efficiency genotypes of banana. Ecol Environ Sci, 2018, 27: 478-483. (in Chinese with English abstract)
[8] 王晓磊, 于海秋, 刘宁, 依兵, 曹敏建. 耐低钾玉米自交系延缓叶片衰老的生理特性. 作物学报, 2012, 38: 1672-1679.
doi: 10.3724/SP.J.1006.2012.01672
Wang X L, Yu H Q, Liu N, Yi B, Cao M J. Physiological characteristics of delaying leaf senescence in maize inbred lines tolerant to potassium deficiency. Acta Agron Sin, 2012, 38: 1672-1679. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.01672
[9] 华含白, 李召虎, 田晓莉. 辽棉18与新棉99B苗期耐低钾能力的差异及其机制. 作物学报, 2009, 35: 475-482.
Hua H B, Li Z H, Tian X L. Difference and its Mechanism in tolerance to low-potassium between Liaomian 18 and NuCOTN99B at seedling stage. Acta Agron Sin, 2009, 35: 475-482. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00475
[10] Zhao X H, Yu H Q, Wen J, Wang X G, Qi D, Wang J, Wang Q. Response of root morphology, physiology and endogenous hormones in maize (Zea mays L.) to potassium deficiency. J Integr Agric, 2016, 15: 785-794.
doi: 10.1016/S2095-3119(15)61246-1
[11] Wang Y, Wu W H. Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency. Curr Opin Plant Biol, 2015, 25: 46-52.
doi: 10.1016/j.pbi.2015.04.007 pmid: 25941764
[12] 陆潭, 陈华涛, 张威, 陈新. 耐低钾大豆品种筛选及低钾胁迫下Lee 68的差异表达基因分析. 大豆科学, 2020, 39: 489-499.
Lu T, Chen H T, Zhang W, Chen X. Screening of tolerant soybean varieties and analysis of differential expressed genes of Lee 68 under low-potassium stress. Soybean Sci, 2020, 39: 489-499. (in Chinese with English abstract)
[13] 罗曦, 吴方喜, 林强, 连玲, 何炜, 谢鸿光, 陈丽萍, 朱永生, 魏毅东, 蒋家焕, 谢华安, 张建福. 水稻苗期耐低钾品种筛选及相关性状的QTL定位. 植物遗传资源学报, 2019, 20: 1262-1270.
Luo X, Wu F X, Lin Q, Lian L, He W, Xie H G, Chen L P, Zhu Y S, Wei Y D, Jiang J H, Xie H A, Zhang J F. Screening of rice germplasm resources and mapping QTLs for traits related with potassium deficiency resistance at seedling stage. J Plant Genet Resour, 2019, 20: 1262-1270. (in Chinese with English abstract)
[14] 赵信林, 王火焰, 刘晓伟, 高帅帅, 陈照明, 朱德进, 周健民. 长三角地区耐低钾小麦品种筛选. 江苏农业科学, 2018, 46(18): 73-76.
Zhao X L, Wang H Y, Liu X W, Gao S S, Chen Z M, Zhu D J, Zhou J M. Screening of wheat cultivars with tolerance to low potassium in the Yangtze River delta. Jiangsu Agric Sci, 2018, 46(18): 73-76. (in Chinese with English abstract)
[15] 王准, 张恒恒, 董强, 贵会平, 王香茹, 庞念厂, 李永年, 牛静, 靳丁沙, 汪苏洁, 张西岭, 宋美珍. 棉花耐低氮和氮敏感种质筛选及验证. 棉花学报, 2020, 32: 538-551.
Wang Z, Zhang H H, Dong Q, Gui H P, Wang X R, Pang N C, Li Y N, Niu J, Jin D S, Wang S J, Zhang X L, Song M Z. Screening and verification of low nitrogen tolerant and nitrogen sensitive cotton germplasm. Cotton Sci, 2020, 32: 538-551. (in Chinese with English abstract)
[16] 宁运旺, 马洪波, 许仙菊, 汪吉东, 张辉, 许建平, 陈杰, 张永春. 氮磷钾缺乏对甘薯前期生长和养分吸收的影响. 中国农业科学, 2013, 46: 486-495.
Ning Y W, Ma H B, Xu X J, Wang J D, Zhang H, Xu J P, Chen J, Zhang Y C. Effects of deficiency of N, P, or K on growth traits and nutrient uptakes of sweetpotato at early growing stage. Sci Agric Sin, 2013, 46: 486-495. (in Chinese with English abstract)
[17] 库文珍, 彭克勤, 萧浪涛, 张雪芹, 沈志锦, 黄欣. 低钾胁迫对不同基因型水稻苗期根系生长和内源激素含量的影响. 亚热带植物科学, 2008, 37(1): 21-24.
Ku W Z, Peng K Q, Xiao L T, Zhang X Q, Shen Z J, Huang X. Effect of low potassium stress on root growth and endogenous phytohormones contents of different rice genotypes at seedling stage. Subtrop Plant Sci, 2008, 37(1): 21-24. (in Chinese with English abstract)
[18] 陈凌, 王君杰, 王海岗, 曹晓宁, 刘思辰, 田翔, 秦慧彬, 乔治军. 耐低氮糜子品种的筛选及农艺性状的综合评价. 中国农业科学, 2020, 53: 3214-3224.
Chen L, Wang J J, Wang H G, Cao X N, Liu S C, Tian X, Qin H B, Qiao Z J. Screening of broomcorn millet varieties tolerant to low nitrogen stress and the comprehensive evaluation of their agronomic traits. Sci Agric Sin, 2020, 53: 3214-3224. (in Chinese with English abstract)
[19] 徐顺莉, 房伟民, 管志勇, 蒋甲福, 陈素梅, 廖园, 陈发棣. 耐低钾切花菊品种筛选及其苗期耐性生理研究. 园艺学报, 2013, 40: 2463-2471.
Xu S L, Fang W M, Guan Z Y, Jiang J F, Chen S M, Liao Y, Chen F D. Screening cut chrysanthemum varieties in low potassium tolerant and patience physiology in seedling. Acta Hortic Sin, 2013, 40: 2463-2471. (in Chinese with English abstract)
[20] 田晓莉, 王刚卫, 朱睿, 杨培珠, 段留生, 李召虎. 棉花耐低钾基因型筛选条件和指标的研究. 作物学报, 2008, 34: 1435-1443.
Tian X L, Wang G W, Zhu R, Yang P Z, Duan L S, Li Z H. Conditions and indicators for screening cotton (Gossypium hirsutum) genotypes tolerant to low-potassium. Acta Agron Sin, 2008, 34: 1435-1443. (in Chinese with English abstract)
[21] 唐忠厚, 张允刚, 魏猛, 陈晓光, 史新敏, 张爱君, 李洪民, 丁艳锋. 耐低钾和钾高效型甘薯品种(系)的筛选及评价指标. 作物学报, 2014, 40: 542-549.
doi: 10.3724/SP.J.1006.2014.00542
Tang Z H, Zhang Y G, Wei M, Chen X G, Shi X M, Zhang A J, Li H M, Ding Y F. Screening and evaluation indicators for low potassium-tolerant and potassium efficient sweetpotato (Ipomoea batatas L.) varieties (lines). Acta Agron Sin, 2014, 40: 542-549. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00542
[22] 杜保见, 郜红建, 常江, 章力干. 小麦苗期氮素吸收利用效率差异及聚类分析. 植物营养与肥料学报, 2014, 20: 1349-1357.
Du B J, Gao H J, Chang J, Zhang L G. Screening and cluster analysis of nitrogen use efficiency of different wheat cultivars at the seedling stage. J Plant Nutr Fert, 2014, 20: 1349-1357. (in Chinese with English abstract)
[23] 陈晨, 龚海青, 张敬智, 徐寓军, 郜红建. 不同基因型水稻苗期氮营养特性差异及综合评价. 中国生态农业学报, 2016, 24: 1347-1355.
Chen C, Gong H Q, Zhang J Z, Xu Y J, Gao H J. Evaluation of nitrogen nutrition characteristics of different rice cultivars at seedling stage. Chin J Eco-Agric, 2016, 24: 1347-1355. (in Chinese with English abstract)
[24] 王西志, 王斌, 李迎春, 韩鹏辉, 彭正萍. 不同钾营养效率玉米品种的筛选. 中国土壤与肥料, 2012, (1): 64-68.
Wang X Z, Wang B, Li Y C, Han P H, Peng Z P. Screening of maize varieties with different potassium nutrient efficiencies. Soil Fert Sci China, 2012, (1): 64-68 (in Chinese with English abstract).
[25] 贵会平, 董强, 张恒恒, 王香茹, 庞念厂, 王准, 刘记, 郑苍松, 付小琼, 张西岭, 宋美珍. 棉花苗期耐低氮基因型初步筛选. 棉花学报, 2018, 30: 326-337.
Gui H P, Dong Q, Zhang H H, Wang X R, Pang N C, Wang Z, Liu J, Zheng C S, Fu X Q, Zhang X L, Song M Z. Preliminary screening of low nitrogen-tolerant cotton genotypes at seedling stage. Cotton Sci, 2018, 30: 326-337. (in Chinese with English abstract)
[26] 张正社, 牛娜, 宋瑜龙, 马守才, 张改生, 王军卫. 耐低钾山羊草基因型的筛选与鉴定. 草地学报, 2017, 25: 832-838.
doi: 10.11733/j.issn.1007-0435.2017.04.021
Zhang Z S, Niu N, Song Y L, Ma S C, Zhang G S, Wang J W. Screening and identification of Aegilops germplasm for tolerance to low potassium stress. Acta Agrest Sin, 2017, 25: 832-838. (in Chinese with English abstract)
[27] 杨佳蒴, 赵文青, 胡伟, 王友华, 陈兵林, 周治国. 棉花苗期耐低钾能力筛选指标研究及其与产量、品质的关系. 棉花学报, 2014, 26: 301-309.
Yang J S, Zhao W Q, Hu W, Wang Y H, Chen B L, Zhou Z G. Indicators of cotton (Gossypium hirsutum L.) cultivar screening for low-potassium tolerance in seedling stage and its relationship with yield and quality. Cotton Sci, 2014, 26: 301-309. (in Chinese with English abstract)
[1] CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261.
[2] WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101.
[3] YAO Zhu-Fang, ZHANG Xiong-Jian, YANG Yi-Ling, HUANG Li-Fei, CHEN Xin-Liang, YAO Xiao-Jian, LUO Zhong-Xia, CHEN Jing-Yi, WANG Zhang-Ying, FANG Bo-Ping. Genetic diversity of phenotypic traits in 177 sweetpotato landrace [J]. Acta Agronomica Sinica, 2022, 48(9): 2228-2241.
[4] CHEN Lu, ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing. Identification and expression analysis of uncoupling protein gene family in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(7): 1683-1696.
[5] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[6] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[7] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[8] MA Meng, YAN Hui, GAO Run-Fei, KOU Meng, TANG Wei, WANG Xin, ZHANG Yun-Gang, LI Qiang. Construction linkage maps and identification of quantitative trait loci associated with important agronomic traits in purple-fleshed sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(11): 2147-2162.
[9] WEI Ping-Yang,QIU Shi,TANG Jian,XIAO Dan-Dan,ZHU Ying,LIU Guo-Dong,XING Zhi-Peng,HU Ya-Jie,GUO Bao-Wei,GAO Shang-Qin,WEI Hai-Yan,ZHANG Hong-Cheng. Screening and characterization of high-quality and high-yield japonica rice varieties in Yanhuai region of Anhui province [J]. Acta Agronomica Sinica, 2020, 46(4): 571-585.
[10] Shan-Bin CHEN, Si-Fan SUN, Nan NIE, Bing DU, Shao-Zhen HE, Qing-Chang LIU, Hong ZHAI. Cloning of IbCAF1 and identification on tolerance to salt and drought stress in sweetpotato [J]. Acta Agronomica Sinica, 2020, 46(12): 1862-1869.
[11] Hai-Yan ZHANG,Bei-Tao XIE,Bao-Qing WANG,Shun-Xu DONG,Wen-Xue DUAN,Li-Ming ZHANG. Evaluation of drought tolerance and screening for drought-tolerant indicators in sweetpotato cultivars [J]. Acta Agronomica Sinica, 2019, 45(3): 419-430.
[12] ZHANG Hai-Yan,DUAN Wen-Xue,XIE Bei-Tao,DONG Shun-Xu,WANG Bao-Qing,SHI Chun-Yu,ZHANG Li-Ming. Effects of Drought Stress at Different Growth Stages on Endogenous Hormones and Its Relationship with Storage Root Yield in Sweetpotato [J]. Acta Agron Sin, 2018, 44(01): 126-136.
[13] WANG Shun-Yi,LI Huan,LIU Qing,SHI Yan-Xi*. Effect of Potassium Application on Root Grow and Yield of Sweet Potato and Its Physiological Mechanism [J]. Acta Agron Sin, 2017, 43(07): 1057-1066.
[14] SHI Xuan,WANG Ru-Yuan,TANG Jun,LI Zong-Yun,LUO Yong-Hai. Analysis of Interspecific SNPs in Sweetpotato Using a Reduced-Representation Genotyping Technology [J]. Acta Agron Sin, 2016, 42(05): 641-647.
[15] WU Chun-Hong,LIU Qing,KONG Fan-Mei,LI Huan,SHI Yan-Xi. Effects of Nitrogen Application Rates on Root Yield and Nitrogen Utilization in Different Purple Sweetpotato Varieties [J]. Acta Agron Sin, 2016, 42(01): 113-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .