Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (5): 1327-1338.doi: 10.3724/SP.J.1006.2023.22033

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta

TAO Yue-Yue1(), SHENG Xue-Wen3, XU Jian2, SHEN Yuan1, WANG Hai-Hou1, LU Chang-Ying1, SHEN Ming-Xing1,*()   

  1. 1Institute of Agricultural Sciences in Taihu Lake District/National Soil Quality Observation and Experimental Station in Xiangcheng, Suzhou 215155, Jiangsu, China
    2Taicang Donglin Professional Cooperatives, Taicang 215400, Jiangsu, China
    3Suzhou Agricultural Technology Extension Center, Suzhou 215155, Jiangsu, China
  • Received:2022-05-16 Accepted:2022-10-10 Online:2023-05-12 Published:2022-10-20
  • Contact: *E-mail: smxwwj@163.com
  • Supported by:
    Jiangsu Agricultural Science and Technology Innovation Fund(CX21(3097));National Natural Science Foundation of China(32101854);National Key Research and Development Program of China(2016YFD0300207)

Abstract:

To improve annual yield and resource use efficiency in rice-oilseed rape systems in the Yangtze River Delta, a field experiment of two cropping systems, namely innovated system with late maturity medium season japonica rice-directly sowing oilseed rape (Rs-Ods) and traditional system with medium maturity late season japonica rice-furrow ridging and placed planting oilseed rape (Rl-Ofrpp), was conducted at Suzhou, Jiangsu, China, from 2017 to 2021. The annual dry matter yield, rice grain yield, distribution and utilization efficiency of heat and solar climatic resources as well as the economic benefit were compared between two cropping systems. The results showed that, compared with the conventional system, the new system significantly improved the accumulated temperature production efficiency by 24.1% and light energy production efficiency by 20.6% of the oilseed rape season, while there was no significant difference in rice season. In the new system, the dry matter yield of rapeseed was significantly increased by 18.2% whereas the rice grain and dry matter yield were significantly decreased by 17.6% and 15.5%, respectively. In the traditional system, with the rate of accumulated temperature between two seasons of 1.77, the accumulative temperature distribution rate was 63.9% in rice season and 36.1% in oilseed rape season, respectively. The annual accumulative temperature of the new system decreased by 588℃, among which the accumulated temperature of rice decreased by 483℃. The accumulative temperature distribution rate in oilseed rape season was increased by 1.8%, and the ratio of accumulated temperature between the two seasons decreased to 1.64. Compared to the traditional system, the new system increased the annual economic benefit by 31.4%, increased the rape planting benefit by 2.2 times and decreased the rice growing economic benefit by 17.4%. In conclusion, the new cropping system, late maturity medium season japonica rice-directly sowing oilseed rape forage, significantly improved the yield, accumulated temperature and radiation production efficiency, growing benefit of oilseed rape season as well as the annual economic benefit. Considering the food and forage security as well as economic benefit, the new rice-rapeseed cropping system can be used as one of the alternatives for the long-term monoculture of rice-wheat or rice-oilseed rape double cropping system.

Key words: the Yangtze River Delta, rice-oilseed rape double cropping system, grain yield, dry matter yield, temperature and radiation allocation, resource use efficiency

Table 1

Scheme of different cropping patterns and crop growth stage"

年份
Year
种植模式
Cropping pattern
水稻 Rice 油菜Oilseed rape
品种
Variety
移栽期Transplanting date (M/D) 收获期
Harvest date (M/D)
生育期
Growth duration (d)
播栽方式
Planting method
播期−栽期
Sowing−transplanting date (M/D)
收获期
Harvest
date (M/D)
生育期
Growth duration (d)
2017/2018 Rs-Ods 南粳9108
Nanjing 9108
5/22 10/4 135 机条播
Mechanical sowing
10/9 5/4 207
Rl-Ofrpp 苏香粳100
Suxiangjing 100
5/22 10/28 159 机开沟摆栽
Mechanical furrowing and placed-planting
9/31−11/3 5/4 212
2018/2019 Rs-Ods 南粳9108
Nanjing 9108
5/18 9/28 133 机条播
Mechanical sowing
10/13 4/25 194
Rl-Ofrpp 苏香粳100
Suxiangjing 100
5/18 10/25 160 机开沟摆栽
Mechanical furrowing and placed-planting
10/5−11/10 4/25 203
2020/2021 Rs-Ods 南粳9108
Nanjing 9108
5/27 10/10 136 机条播
Mechanical sowing
10/15 4/24 191
Rl-Ofrpp 苏香粳100
Suxiangjing 100
5/27 11/3 160 机开沟摆栽
Mechanical furrowing and placed-planting
10/8−11/12 4/24 199

Table 2

Distribution of accumulated temperature of different cropping systems"

年份
Year
处理
Treatment
水稻Rice 油菜Oilseed rape 周年Annual
积温
AT (℃)
分配率
TDR (%)
积温
AT (℃)
分配率
TDR (%)
积温
AT (℃)
两季比
TR
2017/2018 Rs-Ods 3841 61.8 2373 38.2 6214 1.62
Rl-Ofrpp 4311 63.5 2479 36.5 6790 1.74
2018/2019 Rs-Ods 3594 63.1 2098 36.9 5692 1.71
Rl-Ofrpp 4088 65.0 2201 35.0 6289 1.86
2020/2021 Rs-Ods 3765 61.4 2367 38.6 6132 1.59
Rl-Ofrpp 4250 63.2 2475 36.8 6725 1.72
平均Average Rs-Ods 3733 b 62.1 b 2279 a 37.9 a 6013 a 1.64 a
Rl-Ofrpp 4216 a 63.9 a 2385 a 36.1 b 6601 a 1.77 a

Table 3

Distribution of accumulated radiation of different cropping systems"

年份
Year
处理
Treatment
水稻 Rice 油菜 Oilseed rape 周年 Annual
辐射量
Ra (MJ m-2)
分配率
RDR (%)
辐射量
Ra (MJ m-2)
分配率
RDR (%)
辐射量
Ra (MJ m-2)
两季比
RR
2017/2018 Rs-Ods 2165 51.6 2033 48.4 4198 1.06
Rl-Ofrpp 2418 53.7 2087 46.3 4505 1.16
2018/2019 Rs-Ods 1979 55.1 1614 44.9 3594 1.23
Rl-Ofrpp 2280 59.9 1527 40.1 3807 1.49
2020/2021 Rs-Ods 1579 50.0 1576 50.0 3155 1.00
Rl-Ofrpp 1739 50.7 1688 49.3 3427 1.03
平均Average Rs-Ods 1908 a 52.2 a 1741 a 47.8 a 3649 a 1.10 a
Rl-Ofrpp 2146 a 54.8 a 1767 a 45.2 a 3913 a 1.23 a

Fig. 1

Dry matter yield at different cropping systems Different letters mean significantly different among the treatments at P < 0.05. Treatments are the same as those given in Table 1. Rs-Ods: the new system with late maturity medium season japonica rice-directly sowing rapeseed; Rl-Ofrpp: the traditional system with medium maturity late season japonica rice-furrow ridging and placed planting rapeseed."

Fig. 2

Production efficiency of accumulated temperature at different cropping systems Different letters mean significantly different among treatments at P < 0.05. Treatments are the same as those given in Table 1. Rs-Ods: the new system with late maturity medium season japonica rice-directly sowing rapeseed; Rl-Ofrpp: the traditional system with medium maturity late season japonica rice-furrow ridging and placed planting rapeseed."

Fig. 3

Production efficiency of accumulated radiation at different cropping systems Different letters mean significantly different among treatments at P < 0.05. Treatments are the same as those given in Table 1. Rs-Ods: the new system with late maturity medium season japonica rice-directly sowing rapeseed; Rl-Ofrpp: the traditional system with medium maturity late season japonica rice-furrow ridging and placed planting rapeseed."

Fig. 4

Grain yield and straw yield of rice at different cropping systems Different letters mean significantly different among treatments at P < 0.05. Treatments are the same as those given in Table 1. Rs-Ods: the new system with late maturity medium season japonica rice-directly sowing rapeseed; Rl-Ofrpp: the traditional system with medium maturity late season japonica rice-furrow ridging and placed planting rapeseed."

Table 4

Dry matter production energy, annual production of radiation, and economic benefits of different cropping systems"

处理Treatment 水稻 Rice 油菜 Oilseed rape 周年Annual
干物质
产能
DMPE
(MJ m-2)
稻谷
产值
Value
(Y)
成本
Cost
(Y)
净收入
Net income
(Y)
干物质
产能
DMPE
(MJ m-2)
饲油
效益
Value
(Y)
人工
成本
Labor cost
(Y)
其他
成本
Other costs
(Y)
净收入
Net
income
(Y)
干物质
产能
DMPE
(MJ m-2)
总光能
利用率
ARUE
(%)
产值 Value
(Y)
Rs-Ods 29.4 b 23490 10320 13170 29.3 a 25280 650 6870 17760 57.7 a 1.60 a 30930
Rl-Ofrpp 34.8 a 28350 10320 18030 23.9 b 21280 5250 10530 5500 58.7 a 1.51 a 23530

Fig. 5

Production efficiency of accumulated temperature and radiation on rice grain yield at different cropping systems Different letters mean significantly different among the treatments at P < 0.05. Treatments are the same as those given in Table 1. Rs-Ods: the new system with late maturity medium season japonica rice-directly sowing rapeseed; Rl-Ofrpp: the traditional system with medium maturity late season japonica rice-furrow ridging and placed planting rapeseed."

[1] 张锦宗, 朱瑜馨, 赵飞, 钱誉. 我国粮食生产格局演变及增产贡献研究. 中国农业资源与区划, 2017, 38(7): 10-16.
Zhang J Z, Zhu Y X, Zhao F, Qian Y. Spatial-temporal evolution of Chinese grain production pattern and arable land production capacity. Chin J Agric Res Region Plan, 2017, 38(7): 10-16. (in Chinese with English abstract)
[2] 李立军. 中国耕作制度近50年演变规律及未来20年发展趋势研究. 中国农业大学博士学位论文, 北京, 2004.
Li L J. Involving Regularities in Recent 50 Years and Future Trends in 2020 on Farming System in China. PhD Dissertation of China Agricultural University, Beijing, China, 2004. (in Chinese with English abstract)
[3] 赵杨, 高杜娟, 李超, 陈友德, 崔婷, 童中权, 罗先富. 洞庭湖区稻田主要种植模式物质生产及光温资源利用效率的比较. 中国生态农业学报, 2022, 30: 1309-1317.
Zhao Y, Gao D J, Li C, Chen Y D, Cui T, Tong Z Q, Luo X F. Comparison matter production and light and temperature resource utilization efficiency in the main cropping systems of paddy fields in Dongting Lake region. Chin J Eco-Agric, 2022, 30: 1309-1317. (in Chinese with English abstract)
[4] 张顺涛, 任涛, 周橡棋, 方娅婷, 廖世鹏, 丛日环, 鲁剑巍. 油/麦-稻轮作和施肥对土壤养分及团聚体碳氮分布的影响. 土壤学报, 2022, 59(1): 194-205.
Zhang S T, Ren T, Zhou X Q, Fang Y T, Liao S P, Cong R H, Lu J W. Effects of rapeseed/wheat-rice rotation and fertilization on soil nutrients and distribution of aggregate carbon and nitrogen. Acta Pedol Sin, 2022, 59(1): 194-205 (in Chinese with English abstract).
[5] 张顺涛, 鲁剑巍, 丛日环, 任涛, 李小坤, 廖世鹏, 张跃强, 郭世伟, 周明华, 黄益国, 程辉. 油菜轮作对后茬作物产量的影响. 中国农业科学, 2020, 53: 2852-2858.
doi: 10.3864/j.issn.0578-1752.2020.14.009
Zhang S T, Lu J W, Cong R H, Ren T, Li X K, Liao S P, Zhang Y Q, Guo S W, Zhou M H, Huang Y G, Cheng H. Effect of rapeseed rotation on the yield of next-stubble crops. Sci Agric Sin, 2020, 53: 2852-2858. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.14.009
[6] 朱芸, 廖世鹏, 刘煜, 李小坤, 任涛, 丛日环. 长江流域油-稻与麦-稻轮作体系周年养分收支差异. 植物营养与肥料学报, 2019, 25: 64-73.
Zhu Y, Liao S P, Liu Y, Li X K, Ren T, Cong R H. Differences of annual nutrient budgets between rapeseed-rice and wheat-rice rotations in the Yangtze River Basin. J Plant Nutr Fert, 2019, 25: 64-73. (in Chinese with English abstract)
[7] 任继周. 我国传统农业结构不改变不行了-粮食九连增后的隐忧. 草业学报, 2013, 22(3) : 1-5.
Ren J Z. Traditional agriculture structure of our country has to change facing nine consecutive increases in food after the looming concern. Acta Pratac, 2013, 22(3): 1-5. (in Chinese)
[8] 陶玥玥, 汤云龙, 徐坚, 王海候, 黄萌, 孙华, 沈明星. 不同移栽期下毯苗油菜的饲草产量与营养特性. 草业科学, 2019, 36: 785-792.
Tao Y Y, Tang Y L, Xu J, Wang H H, Huang M, Sun H, Shen M X. Forage rapeseed yield and nutrition following carpet seedling transplantation on different planting dates. Prat Sci, 2019, 36: 785-792. (in Chinese with English abstract)
[9] 王洪超, 刘大森, 刘春龙, 陆欣春, 魏巍, 王秀秀. 饲料油菜及其饲用价值研究进展. 土壤与作物, 2016, 5(1): 60-64.
Wang H C, Liu D S, Liu C L, Lu X C, Wei W, Wang X X. Research progress of forage rape and its feed value in China. Soil Crops, 2016, 5(1): 60-64. (in Chinese with English abstract)
[10] 官春云. 改变冬油菜栽培方式, 提高和发展油菜生产. 中国油料作物学报, 2006, 28(1): 83-85.
Guan C Y. The cultivation pattern change of winter rapeseed to increase and develop production. Chin J Oil Crop Sci, 2006, 28(1): 83-85. (in Chinese with English abstract)
[11] 孙华, 黄萌, 陈培峰, 张建栋, 陆长婴, 乔中英, 宋英, 王海侯, 沈明星. 稻草还田与移栽方式对油菜产量形成及经济效益的影响. 中国农学通报, 2015, 31(27): 121-125.
doi: 10.11924/j.issn.1000-6850.casb15030067
Sun H, Huang M, Chen P F, Zhang J D, Lu C Y, Qiao Z Y, Song Y, Wang H H, Shen M X. Effects of rice straw returning and transplanting methods on rape yield and economic benefit. Chin Agric Sci Bull, 2015, 31(27): 121-125. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb15030067
[12] 李艳玲, 刘爱民. 长江流域冬季农业主要作物的耕地竞争机制及案例研究. 长江流域资源与环境, 2009, 18(2): 146-151.
Li Y L, Liu A M. Competition mechanism of cultivated land resources in winter agriculture in the Yangtze basin: theory and case study. Res Environ Yangtze Basin, 2009, 18(2): 146-151. (in Chinese with English abstract)
[13] He L, Asseng S, Zhao G, Wu D R, Yang X Y, Zhuang W, Jin N, Yu Q. Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agric For Meteorol, 2015, 200: 135-143.
doi: 10.1016/j.agrformet.2014.09.011
[14] Liu Y E, Hou P, Xie R Z, Li S K, Zhang H B, Ming B, Ma D L, Liang S M. Spatial adaptabilities of spring maize to variation of climatic conditions. Crop Sci, 2013, 53: 1693-1703.
doi: 10.2135/cropsci2012.12.0688
[15] Zhou B Y, Yue Y, Sun X F, Wang X B, Wang Z M, Ma W, Zhao M. Maize grain yield and dry matter production responses to variations in weather conditions. Agron J, 2016, 108: 196-204.
doi: 10.2134/agronj2015.0196
[16] Wang J, Wang E L, Yang X G, Zhang F S, Yin H. Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Clim Change, 2012, 113: 825-840.
doi: 10.1007/s10584-011-0385-1
[17] 付雪丽, 张惠, 贾继增, 杜立丰, 付金东, 赵明. 冬小麦-夏玉米“双晚”种植模式的产量形成及资源效率研究. 作物学报, 2009, 35: 1708-1714.
doi: 10.3724/SP.J.1006.2009.01708
Fu X L, Zhang H, Jia J Z, Du L F, Fu J D, Zhao M. Yield performance and resources use efficiency of winter wheat and summer maize in double late-cropping system. Acta Agron Sin, 2009, 35: 1708-1714. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.01708
[18] 姚义, 霍中洋, 张洪程, 夏炎, 倪晓诚, 戴其根, 许轲, 魏海燕. 不同生态区播期对直播稻生育期及温光利用的影响. 中国农业科学, 2012, 45: 633-647.
doi: 10.3864/j.issn.0578-1752.2012.04.004
Yao Y, Huo Z Y, Zhang H C, Xia Y, Ni X C, Dai Q G, Xu K, Wei H Y. Effects of sowing date on growth stage and utilization of temperature and illumination of direct seeding rice in different ecological regions. Sci Agric Sin, 2012, 45: 633-647. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2012.04.004
[19] 许轲, 孙圳, 霍中洋, 戴其根, 张洪程, 刘俊, 宋云生, 杨大柳, 魏海燕, 吴爱国, 王显, 吴冬冬. 播期、品种类型对水稻产量、生育期及温光利用的影响. 中国农业科学, 2013, 46: 4222-4233.
doi: 10.3864/j.issn.0578-1752.2013.20.005
Xu K, Sun C, Huo Z Y, Dai Q G, Zhang H C, Liu J, Song Y S, Yang D L, Wei H Y, Wu A G, Wang X, Wu D D. Effects of seeding date and variety type on yield, growth stage and utilization of temperature and sunshine in rice. Sci Agric Sin, 2013, 46: 4222-4233. (in Chinese with English abstract)
[20] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2002. pp 25-38.
Bao S D. Agro-Chemical Analysis of Soil. Beijing: China Agriculture Press, 2002. pp 25-38.
[21] 周宝元, 王志敏, 岳阳, 马玮, 赵明. 冬小麦-夏玉米与双季玉米种植模式产量及光温资源利用特征比较. 作物学报, 2015, 41: 1393-1405.
doi: 10.3724/SP.J.1006.2015.01393
Zhou B Y, Wang Z M, Yue Y, Ma W, Zhao M. Comparison of yield and light-temperature resource use efficiency between wheat-maize and maize-maize cropping systems. Acta Agron Sin, 2015, 41: 1393-1405. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01393
[22] Meng Q F, Sun Q P, Chen X P, Cui Z L, Yue S C, Zhang F S, Römheld V. Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agric Ecosyst Environ, 2012, 146: 93-102.
doi: 10.1016/j.agee.2011.10.015
[23] 黄燕, 吴平. SAS统计分析及应用. 北京: 机械工业出版社, 2005. pp 103-125.
Huang Y, Wu P. Statistical Analysis and Application. Beijing: Machine Press, 2005. pp 103-125. (in Chinese)
[24] 孙华, 黄萌, 陈培峰, 张建栋, 乔中英, 宋英, 沈明星. 不同种植方式下油菜产量形成与花后氮素积累运转比较. 中国油料作物学报, 2016, 38(1): 58-64.
Sun H, Huang M, Chen P F, Zhang J D, Qiao Z Y, Song Y, Shen M X. Effects of cultivation patterns on seed yield, N accumulation and translocation of rapeseed. Chin J Oil Crop Sci, 2016, 38(1): 58-64. (in Chinese with English abstract)
[25] Huang M, Zhang W X, Jiang L G, Zou Y B. Impact of temperature changes on early-rice productivity in a subtropical environment of China. Field Crops Res, 2013, 146: 10-15.
doi: 10.1016/j.fcr.2013.03.007
[26] 王寅, 汪洋, 鲁剑巍, 李小坤, 任涛, 丛日环. 直播和移栽冬油菜生长和产量形成对氮磷钾肥的响应差异. 植物营养与肥料学报, 2016, 22: 132-142.
Wang Y, Wang Y, Lu J W, Li X K, Ren T, Cong R H. Response differences in growth and yield formation of direct-sown and transplanted winter oilseed rape to N, P and K fertilization. Plant Nutr Fert Sci, 2016, 22: 132-142 (in Chinese with English abstract).
[27] 江敏, 金之庆, 石春林, 林文雄. 福建省基于自适应调整的水稻生产对未来气候变化的响应. 作物学报, 2012, 38: 2246-2257.
doi: 10.3724/SP.J.1006.2012.02246
Jiang M, Jin Z Q, Shi C L, Lin W X. Response of rice production based on self-adaption to climate change in Fujian province. Acta Agron Sin, 2012, 38: 2246-2257. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.02246
[28] 谢正荣, 郭秧全, 沈小妹, 朱秀芳, 陈群, 景学义, 黄筱敏, 王吉方, 徐清华. 太湖农区水稻不同类型品种及播期对生育期与实产的影响初探. 上海农业学报, 2000, 16(1): 28-32.
Xie Z R, Guo Y Q, Shen X M, Zhu X F, Chen Q, Jing X Y, Huang X M, Wang J F, Xu Q H. Preliminary study on influences of various rice varieties and sowing dates on growth periods and actual yield in Taihu farming region. Acta Agric Shanghai, 2000, 16(1): 28-32. (in Chinese with English abstract)
[29] 周淑新, 董梅英, 孙苏卿. 作物生产与光合效率的相关分析. 张家口农专学报, 2003, 19(2): 4-5.
Zhou S X, Dong H Y, Sun S Q. Correlation analysis of crop production and photosynthetic efficiency. J Zhangjiakou Agric Coll, 2003, 19(2): 4-5.
[30] Zhou B Y, Yue Y, Sun X F, Ding Z S, Ma W, Zhao M. Maize kernel weight responses to sowing date-associated variation in weather conditions. Crop J, 2017, 5: 43-51.
doi: 10.1016/j.cj.2016.07.002
[31] 习敏, 杜祥备, 吴文革, 孔令聪, 陈金华, 岳伟, 许有尊, 周永进. 稻麦两熟系统适期晚播对周年产量和资源利用效率的影响. 应用生态学报, 2020, 31: 165-172.
doi: 10.13287/j.1001-9332.202001.023
Xi M, Du X B, Wu W G, Kong L C, Chen J H, Yue W, Xu Y Z, Zhou Y J. Effects of late sowing of two season crops on annual yield and resource use efficiency in rice-wheat double cropping system. Chin J Appl Ecol, 2020, 31: 165-172. (in Chinese with English abstract)
[32] 张敏, 王岩岩, 蔡瑞国, 李婧实, 王文颇, 周印富, 李彦生, 杨树宗. 播期推迟对冬小麦产量形成和籽粒品质的调控效应. 麦类作物学报, 2013, 33: 325-330.
Zhang M, Wang Y Y, Cai R G, Li J S, Wang W P, Zhou Y F, Li Y S, Yang S Z. Regulating effect of delayed sowing date on yield formation and grain quality of winter wheat. J Triticeae Crops, 2013, 33: 325-330. (in Chinese with English abstract)
[33] 秦乐, 王红光, 李东晓, 崔帅, 李瑞奇, 李雁鸣. 不同密度下超窄行距对冬小麦群体质量和产量的影响. 麦类作物学报, 2016, 36: 659-667.
Qin L, Wang H G, Li D X, Cui S, Li R Q, Li Y M. Effect of super-narrow row space on population quality and grain yield of winter wheat in different planting densities. J Triticeae Crops, 2016, 36: 659-667. (in Chinese with English abstract)
[34] 王树安. 小麦-夏玉米平播亩产吨粮的理论与实践. 北京: 农业出版社, 1991.
Wang S A. Theory and Practice High Yield Output of 15 Tons per Hectare in Winter Wheat and Summer Maize Double-Cropping System. Beijing: Agriculture Press, 1991. (in Chinese)
[35] 周宝元. 黄淮海两熟制资源季节间优化配置及季节内高效利用技术体系研究. 中国农业大学博士学位论文, 北京, 2015.
Zhou B Y. Study on the Distribution and High Efficient Utilization of Resources for Double Cropping System in the Huang-Huai-Hai Plain. PhD Dissertation of China Agricultural University,Beijing, China, 2015 (in Chinese with English abstract).
[36] 杜祥备, 孔令聪, 习敏, 吴文革, 陈金华, 岳伟. 江淮区域稻麦两熟制周年资源分配、利用特征. 中国生态农业学报, 2019, 27: 1078-1087.
Du X B, Kong L C, Xi M, Wu W G, Chen J H, Yue W. Characteristics of resource allocation and utilization of rice-wheat double cropping system in the Jianghuai Area. Chin J Eco-Agric, 2019, 27: 1078-1087. (in Chinese with English abstract)
[37] 周宝元, 马玮, 孙雪芳, 丁在松, 李从锋, 赵明. 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究. 作物学报, 2019, 45: 589-600.
doi: 10.3724/SP.J.1006.2019.81067
Zhou B Y, Ma W, Sun X F, Ding Z S, Li C F, Zhao M. Characteristics of annual climate resource distribution and utilization in high-yielding winter wheat-summer maize double cropping system. Acta Agron Sin, 2019, 45: 589-600. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.81067
[38] Allison J C S, Daynard T B. Effect of change in time of flowering induced by altering photoperiod or temperature, on attributes related to yield in maize. Crop Sci, 1979, 19: 1-14.
doi: 10.2135/cropsci1979.0011183X001900010001x
[39] Dong J W, Liu J Y, Tao F L, Xu X L, Wang J B. Spatio-temporal changes in annual accumulated temperature in China and the effects on cropping systems, 1980s to 2000. Climate Res, 2009, 40: 37-48.
doi: 10.3354/cr00823
[1] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[2] SONG Jie, WANG Shao-Xiang, LI Liang, HUANG Jin-Ling, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2023, 49(2): 539-551.
[3] LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510.
[4] ZHANG Xiang-Yu, HU Xin-Hui, GU Shu-Bo, Lin Xiang, YIN Fu-Wei, WANG Dong. Effects of staged potassium application on grain yield and nitrogen use efficiency of winter wheat under reduced nitrogen conditions [J]. Acta Agronomica Sinica, 2023, 49(2): 447-458.
[5] CHEN Jia-Jun, LIN Xiang, GU Shu-Bo, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(1): 277-285.
[6] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[7] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[8] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[13] DING Yong-Gang, CHEN Li, DONG Jin-Xing, ZHU Min, LI Chun-Yan, ZHU Xin-Kai, DING Jin-Feng, GUO Wen-Shan. Characteristics of yield components, nitrogen accumulation and translocation, and grain quality of semi-winter cultivars with high-yield and high-efficiency [J]. Acta Agronomica Sinica, 2022, 48(12): 3144-3154.
[14] SONG Jie, REN Hao, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LI Liang, WANG Shao-Xiang, HUANG Jin-Ling, LIU Peng. Effect of potassium application on vascular tissue structure and material transport properties in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2908-2919.
[15] KE Jian, CHEN Ting-Ting, XU Hao-Cong, ZHU Tie-Zhong, WU Han, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted [J]. Acta Agronomica Sinica, 2021, 47(7): 1372-1382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .