Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1726-1732.doi: 10.3724/SP.J.1006.2023.21043
• RESEARCH NOTES • Previous Articles
TIAN Min(), LIU Xin-Chun, PAN Jia-Jia, LIANG Li-Jing, DONG Lei, LIU Mei-Chi, FENG Zong-Yun*()
[1] | 许伟利, 董伟志, 王军, 徐晶, 马云, 沙元赛. 大麦籽粒营养成分及开发研究进展. 大麦与谷类科学, 2019, 36(3): 52-55. |
Xu W L, Dong W Z, Wang J, Xu J, Ma Y, Sha Y S. Research progresses on the nutrients of barley grain and their utilization. Barl Cereal Sci, 2019, 36(3): 52-55. (in Chinese with English abstract) | |
[2] | 赵斌, 陈晓东, 季昌好, 朱斌, 王瑞. 不同刈割时期与干燥方式对大麦饲草品质的影响. 草原与草坪, 2020, 40(5): 98-101. |
Zhao B, Chen X D, Ji C H, Zhu B, Wang R. Effects of different cutting times and drying methods on the quality of barley forage. Grassland Turf, 2020, 40(5): 98-101. (in Chinese with English abstract) | |
[3] |
赵加涛, 杨向红, 付正波, 字尚永, 刘猛道. 不同大麦品种饲草产量及品质研究. 中国农学通报, 2021, 37(27): 27-31.
doi: 10.11924/j.issn.1000-6850.casb2020-0746 |
Zhao J T, Yang X H, Fu Z B, Zi S Y, Liu M D. Yield and quality of forage grass of different barley varieties. Chin Agric Sci Bull, 2021, 37(27): 27-31. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb2020-0746 |
|
[4] |
黄水珍, 冯德庆, 黄秀声, 黄小云. 大麦‘花22’不同生育期的饲用品质及呕吐毒素含量. 农学学报, 2021, 11(4): 1-5.
doi: 10.11923/j.issn.2095-4050.cjas20191200299 |
Huang S Z, Feng D Q, Huang X S, Huang X Y. Forage quality and vomitoxin content of barley Hua 22 at different growth stages. J Agric, 2021, 11(4): 1-5. (in Chinese with English abstract) | |
[5] |
Han F, Ullrich S E, Romagosa I, Clancy J A, Froseth J A, Wesenberg D M. Quantitative genetic analysis of acid detergent fiber content in barley grain. J Cereal Sci, 2003, 38: 167-172.
doi: 10.1016/S0733-5210(03)00020-1 |
[6] |
Siahsar B A, Peighambari S A, Taleii A R, Naghavi M R, Nabipour A, Sarrafi A. QTL analysis of forage quality traits in barley (Hordeum vulgare L.). Cereal Res Commun, 2009, 37: 479-488.
doi: 10.1556/CRC.37.2009.4.1 |
[7] |
Grando S, Baum M, Ceccarelli S, Goodchild A, El-Haramein F Jaby, Jahoor A, Backes G. QTLs for straw quality characteristics identified in recombinant inbred lines of a Hordeum vulgare × H. spontaneum cross in a Mediterranean environment. Theor Appl Genet, 2005, 110: 688-695.
pmid: 15678328 |
[8] |
Surber L, Abdel-Haleem H, Martin J, Hensleigh P, Cash D, Bowman J, Blake T. Mapping quantitative trait loci controlling variation in forage quality traits in barley. Mol Breed, 2011, 28: 189-200.
doi: 10.1007/s11032-010-9473-6 |
[9] |
Abdel-Haleem H, Bowman J G P, Surber L, Blake T. Variation in feed quality traits for beef cattle in Steptoe×Morex barley population. Mol Breed, 2012, 29: 503-514.
doi: 10.1007/s11032-011-9567-9 |
[10] |
Burton R A, Shirley N J, King B J, Harvey A J, Fincher G B. The CesA gene family of barley. quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol, 2004, 134: 224-236.
doi: 10.1104/pp.103.032904 pmid: 14701917 |
[11] |
Burton R A, Jobling S A, Harvey A J, Shirley N J, Mather D E, Bacic A, Fincher G B. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiol, 2008, 146: 1821-1833.
doi: 10.1104/pp.107.114694 |
[12] | Burton R A, Ma G, Baumann U, Harvey A J, Shirley N J, Taylor J, Pettolino F, Bacic A, Beatty M, Simmons C R, Dhugga K S, Rafalski J A, Tingey S V, Fincher G B. A customized gene expression microarray reveals that the brittle stem phenotype fs2 of barley is attributable to a retroelement in the HvCesA4 cellulose synthase gene. Plant Physiol, 2010, 14: 1716-1728. |
[13] | 王晓雨. 大麦β-葡聚糖、微量元素含量的全基因组关联分析及纤维素合成酶类基因家族的鉴定. 西北农林科技大学硕士学位论文, 陕西杨凌, 2020. |
Wang X Y. Genome-wide Association Study of the β-glucan and Trace Elements Content, and Identification of Cellulose Synthase Gene Family in Barley (Hordeum vulgare). MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2020 (in Chinese with English abstract). | |
[14] |
Nishantha M D L C, Jeewani D C, Xing G W, Nie X J, Song W N. Genome-wide identification and analysis of the CslF gene family barley (Hordeum vulgare L.). J Microbiol Biotechnol Food Sci, 2020, 10: 122-126.
doi: 10.15414/jmbfs.2020.10.1.122-126 |
[15] | Houston K, Burton R A, Sznajder B, Rafalski A J, Dhugga K S, Mather D E, Taylor J, Steffenson B J, Waugh R, Fincher G B. A genome-wide association study for culm cellulose content in barley reveals candidate genes co-expressed with members of the CELLULOSE SYNTHASE A gene family. PLoS One, 2015, 10: e0130890. |
[16] |
Buchanan M, Burton R A, Dhugga K S, Rafalski A J, Tingey S V, Shirley N J, Fincher G B. Endo-(1, 4)-β-Glucanase gene families in the grasses: temporal and spatial. Co-transcription of orthologous genes. BMC Plant Biol, 2012, 12: 235.
doi: 10.1186/1471-2229-12-235 |
[17] | Cantarel B L, Coutinho P M, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res, 2009, 37: D233-D238. |
[18] | Zhong R Q, Ye Z H. Complexity of the transcriptional network controlling secondary wall biosynthesis. Plant Sci Int J Exp Plant Biol, 2014, 229: 193-207. |
[19] |
Zhong R, Ye Z H. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol, 2015, 56: 195-214.
doi: 10.1093/pcp/pcu140 pmid: 25294860 |
[20] | 赵宇慧, 李秀秀, 陈倬, 鲁宏伟, 刘羽诚, 张志方, 梁承志. 生物信息学分析方法Ⅰ: 全基因组关联分析概述. 植物学报, 2020, 55: 715-732. |
Zhao Y H, Li X X, Chen Z, Lu H W, Liu Y C, Zhang Z F, Liang C Z. Bioinformatics analysis methods. I: Overview of genome-wide association analysis. Acta Bot Sin, 2020, 55: 715-732. (in Chinese with English abstract) | |
[21] |
Yang W, Zhao J L, Zhang S H, Chen L, Yang T F, Dong J F, Fu H, Ma Y M, Zhou L, Wang J, Liu W, Liu Q, Liu B. Genome-wide association mapping and gene expression analysis reveal the negative role of OsMYB21 in regulating bacterial blight resistance in rice. Rice (NY), 2021, 14: 58.
doi: 10.1186/s12284-021-00501-z pmid: 34185169 |
[22] |
Liu P, Jin Y R, Liu J D, Liu C Y, Yao H P, Luo F Y, Guo Z H, Xia X C, He Z H. Genome-wide association mapping of root system architecture traits in common wheat (Triticum aestivum L.). Euphytica, 2019, 215: 121.
doi: 10.1007/s10681-019-2452-z |
[23] |
Wang M, Yan J B, Zhao J R, Song W, Zhang X B, XiaoY N, Zheng Y L. Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci, 2012, 196: 125-131.
doi: 10.1016/j.plantsci.2012.08.004 pmid: 23017907 |
[24] |
Wrucke D F, Mamidi S, Rahman M. Genome-wide association study for frost tolerance in canola (Brassica napus L.) under field conditions. J Plant Biochem Biotechnol, 2019, 28: 211-222.
doi: 10.1007/s13562-018-0472-8 |
[25] | 聂石辉, 王仙, 向莉, 张金汕, 李志强, 任毅, 方伏荣. 干旱胁迫对中亚大麦农艺性状的影响及其相关基因定位. 麦类作物学报, 2022, 42: 59-67. |
Nie S H, Wang X, Xiang L, Zhang J S, Li Z Q, Ren Y, Fang F R. Responses to drought stress and gene mapping of related agronomic traits of central Asian barley. J Triticeae Crops, 2022, 42: 59-67. (in Chinese with English abstract) | |
[26] |
He T H, Beate H C, Tolera A T, Zhang X Q, Chen K F, David M, Paul T, Sharon W, Li C D. Gene-set association and epistatic analyses reveal complex gene interaction networks affecting flowering time in a worldwide barley collection. J Exp Bot, 2019, 70: 5603-5616.
doi: 10.1093/jxb/erz332 pmid: 31504706 |
[27] |
Fan X Y, Sun Y D, Zhu J, Lyu C, Guo B J, Xu R G. A 191-bp insertion/deletion in GBSS1 region is responsible for the changes in grain amylose content in barley (Hordeum vulgare L.). Mol Breed, 2017, 37: 81.
doi: 10.1007/s11032-017-0677-x |
[28] |
耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析. 作物学报, 2021, 47: 1205-1214.
doi: 10.3724/SP.J.1006.2021.01074 |
Geng L, Huang Y C, Li M D, Xie S G, Ye L Z, Zhang G P. Genome-wide association study of β-glucan content in barley grains. Acta Agron Sin, 2021, 47: 1205-1214. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01074 |
|
[29] |
Hazzouri K M, Hazzouri K M, Khraiwesh B, Amiri K M A, Amiri K M A, Pauli D, Blake T, Mullath M S S K, Mansour D N A L, Salehi-Ashtiani K, Purugganan M, Masmoudi K. Mapping of HKT1;5 gene in barley using GWAS approach and its implication in salt tolerance mechanism. Front Plant Sci, 2018, 9: 156.
doi: 10.3389/fpls.2018.00156 pmid: 29515598 |
[30] |
Aghnoum R, Bvindi C, Menet G, Hoop B D, Maciel L N, Niks R E. Host/nonhost status and genetics of resistance in barley against three pathotypes of Magnaporthe blast fungi. Euphytica, 2019, 215: 116.
doi: 10.1007/s10681-019-2436-z |
[31] | 安玉民, 王菊葵, 黄烨, 徐晓梅. 马铃薯秸秆中纤维素与半纤维素含量的测定. 现代农业科技, 2016, (17): 159-160. |
An Y M, Wang J K, Huang Y, Xu X M. Determination of cellulose and hemicellulose content in potato stalk. Mod Agric Sci Technol, 2016, (17): 159-160. (in Chinese with English abstract) | |
[32] | Zhu C S, Gore M, Buckler E S, Yu J M. Status and prospects of association mapping in plants. Plant Genomics, 2008, 1: 5-20. |
[33] |
Kaler A S, Purcell L C. Estimation of a significance threshold for genome-wide association studies. BMC Genomics, 2019, 20: 618.
doi: 10.1186/s12864-019-5992-7 pmid: 31357925 |
[34] | Alqudah A M, Sallam A, Baenziger P S, Brner A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from barley: a review. J Advanc Res, 2020, 22: 119-135. |
[35] |
Lou Q J, Chen L, Mei H W, Wei H B, Feng F J, Wang P, Xia H, Li T M, Luo L J. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. Exp Bot, 2015, 66: 4749-4757.
doi: 10.1093/jxb/erv246 |
[36] |
Zhang X, Ren Z Y, Luo B W, Zhong H X, Ma P, Zhang H K, Hu H M, Wang Y K, Zhang H Y, Liu D, Wu L, Nie Z, Zhu Y H, He W Z, Zhang S Z, Su S Z, Shen Y O, Gao S B. Genetic architecture of maize yield traits dissected by QTL mapping and GWAS in maize. Crop J, 2022, 10: 436-446.
doi: 10.1016/j.cj.2021.07.008 |
[37] |
Ma L L, Zhang M Y, Chen J, Qing C Y, He S J, Zou C Y, Yuan G S, Yang C, Peng H, Pan G T, Lübberstedt T, Shen Y O. GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L.) seedlings. Theor Appl Genet, 2021, 134: 3305-3318.
doi: 10.1007/s00122-021-03897-w |
[38] | Li K Q, Wang J, Kuang L Q, Tian Z, Wang X F, Dun X L, Tu J X, Wang H Z. Genome-wide association study and transcriptome analysis reveal key genes affecting root growth dynamics in rapeseed. Biotechnol Biof, 2021, 14: 178. |
[39] |
马珍珍, 李加纳, Wittkop B, Frauen M, 阎星颖, 刘列钊, 肖阳. 甘蓝型油菜籽粒含油量、蛋白质、纤维素及半纤维素含量QTL分析. 作物学报, 2013, 39: 1214-1222.
doi: 10.3724/SP.J.1006.2013.01214 |
Ma Z Z, Li J N, Wittkop B, Frauen M, Yan X Y, Liu L Z, Xiao Y. QTL mapping for oil, protein, cellulose, and hemicellulose contents in seeds of Brassica napus L. Acta Agron Sin, 2013, 39: 1214-1222. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01214 |
|
[40] |
Zhang B C, Liu X L, Qian Q, Liu L F, Dong G J, Xiong G Y, Zeng D L, Zhou Y H. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice. Proc Natl Acad Sci USA, 2011, 108: 5110-5115.
doi: 10.1073/pnas.1016144108 pmid: 21383162 |
[41] |
Ryae J J, Hyuk C J. Lactic acid fermentation of germinated barley fiber and proliferative function of colonic epithelial cells in loperamide-induced rats. J Med Food, 2010, 13: 950-960.
doi: 10.1089/jmf.2009.1307 pmid: 20673062 |
[42] |
Gong J S, Yang C B. Advances in the methods for studying gut microbiota and their relevance to the research of dietary fiber functions. Food Res Int, 2012, 48: 916-929.
doi: 10.1016/j.foodres.2011.12.027 |
[43] | Li H Y, Xu L, Liu W J, Fang M Q, Wang N. Assessment of the nutritive value of whole corn stover and its morphological fractions. Asian Austr J Anim Sci, 2014, 27: 194-200. |
[44] |
Zhang B C, Deng L W, Qian Q, Xiong G Y, Zeng D, Li R, Guo L B, Li J Y, Zhou Y H. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol Biol, 2009, 71: 509-524.
doi: 10.1007/s11103-009-9536-4 pmid: 19697141 |
[45] |
Vega-Sánchez M E, Verhertbruggen Y, Christensen U, Chen X, Sharma V, Varanasi P, Jobling S A, Talbot M, White R G, Joo M. Loss of cellulose synthase-like f6 function affects mixed-linkage glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice. Plant Physiol, 2012, 159: 56-69.
doi: 10.1104/pp.112.195495 pmid: 22388489 |
[1] | WANG Rang-Jian, YANG Jun, ZHANG Li-Lan, GAO Xiang-Feng. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots [J]. Acta Agronomica Sinica, 2023, 49(7): 1843-1859. |
[2] | DAI Wen-Hui, ZHU Qi, ZHANG Xiao-Fang, LYU Shen-Yang, XIANG Xian-Bo, MA Tao, CHEN Yu-Jie, ZHU Shi-Hua, DING Wo-Na. Identification and gene mapping of brittle culm mutant bc21 in rice [J]. Acta Agronomica Sinica, 2023, 49(5): 1426-1431. |
[3] | YANG Ye, SUN Qi, XING Xin-Xin, ZHANG Hai-Tao, ZHAO Zhi-Chao, CHENG Zhi-Jun. Identification of sheathed panicle mutant sui1-5 and screening of OsPSS1 interaction protein in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 597-607. |
[4] | MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661. |
[5] | XU Kai, ZHENG Xing-Fei, ZHANG Hong-Yan, HU Zhong-Li, NING Zi-Lan, LI Lan-Zhi. Genome-wide association analysis of indica-rice heading date based on NCII genetic mating design [J]. Acta Agronomica Sinica, 2023, 49(1): 86-96. |
[6] | GUO Nan-Nan, LIU Tian-Ce, SHI Shuo, HU Xin-Ting, NIU Ya-Dan, LI Liang. Regulation of long non-coding RNA (LncRNA) in barley roots in response to Piriformospora indica colonization [J]. Acta Agronomica Sinica, 2022, 48(7): 1625-1634. |
[7] | YANG Xin, LI Yu, LIU Chuan-Bing, ZHANG Li-Lan, HE Qin-Yao, QI Jian-Min, ZHANG Li-Wu. Reference genes screening for expression analysis of secondary cell wall synthesis related genes in jute (Corchorus capsularis) [J]. Acta Agronomica Sinica, 2022, 48(7): 1614-1624. |
[8] | WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287. |
[9] | YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190. |
[10] | GUO Bao-Jian, WANG Shuang, LYU Chao, WANG Fei-Fei, XU Ru-Gen. Regulation of adventitious root development by HvLBD19 gene in barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2022, 48(10): 2435-2442. |
[11] | YU Xin-Lian, LI Xin, YAO Xiao-Hua, YAO You-Hua, BAI Yi-Xiong, AN Li-Kun, WU Kun-Lun. Genetic mapping and candidate gene analysis of the major QTL cqHD2H-2 for early heading in barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2022, 48(10): 2463-2474. |
[12] | HE Jun-Yu, ZHONG Wei, CHEN Yun-Qiong, WANG Wei-Bin, XIONG Jing-Lei, JIANG Ya-Li, SHI Hui-Meng, CHEN Sheng-Wei. Analysis on the accumulation characteristics of seven flavonoids at grain development stage in barley [J]. Acta Agronomica Sinica, 2021, 47(8): 1624-1630. |
[13] | GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214. |
[14] | LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258. |
[15] | JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261. |
|