Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2528-2538.doi: 10.3724/SP.J.1006.2023.24243

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum

FANG Meng-Ying1(), REN Liang1,2, LU Lin1, DONG Xue-Rui1, WU Zhi-Hai2, YAN Peng1,*(), DONG Zhi-Qiang1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Jilin Agricultural University, Changchun 130118, Jilin, China
  • Received:2022-10-28 Accepted:2023-02-10 Online:2023-09-12 Published:2023-02-23
  • Supported by:
    National Key Research and Development Program of China(2020YFD1000801);National Key Research and Development Program of China(2019YFD1001703)

Abstract:

Shaping good root structure is the key problem to play the high yield potential of sorghum and increase the yield of grain sorghum. To investigate the effect of ethylene-chlormequat-potassium (ECK) on sorghum root morphology and yield, field trials were conducted in 2020 and 2021 using the medium to tall sorghum variety Liaoza 19 (LZ19) and the dwarf variety Liaoza 37 (LZ37). A randomized zonal experimental design was used to set up the ECK treatment with a foliar spray of 0.75 L hm-2 at the five-leaf stage of sorghum and a control spray with an equal amount of clean water (CK). The results showed that compared with CK, sorghum root dry weight showed a gradual decrease from the flowering stage. ECK significantly increased root dry weight of LZ19 and LZ37 at filling and maturity stages by 11.4% and 19.7%, 10.6% and 9.9%, respectively. ECK increased root length and root surface area of fine and medium roots (root system diameter < 4 mm) of LZ19 and root length, root surface area, and root volume of LZ37 at different diameters at grain filling stage. At maturity stage, ECK increased root length, root surface area, root volume, and root mean diameter of LZ19 and that of LZ37, and the increase of system morphological indexes was the largest in the two varieties. ECK treatment increased the yield of LZ19 by 3.3% and 13.4%, and LZ37 by 11.4% and 9.8% in 2020 and 2021, respectively, compared with CK. In conclusion, ECK treatment promoted sorghum root development and significantly increased sorghum yields, which can be used as an important cultivation measure for sorghum root promotion and yield increase in summer sown areas.

Key words: sorghum, ethylene-chlormequat-potassium, root, grain yield

Fig. 1

Daily average air temperature and precipitation during sorghum growing season in 2020 and 2021"

Fig. 2

Effect of ethylene-chlormequat-potassium on root morphology of sorghum variety Liaoza 19 and Liaoza 37 at maturity stage CK: control; ECK: ethylene-chlormequat-potassium treatment."

Fig. 3

Effect of ethylene-chlormequat-potassium on root dry weight of sorghum variety Liaoza 19 and Liaoza 37 at flowering, grain-filling, and maturity stages CK: control treatment; ECK: ethylene-chlormequat-potassium treatment; LZ37: Liaoza 37; LZ19: Liaoza 19. ns means not significant at the 0.05 probability level. * and ** mean significant differences at the 0.05 and 0.01 probability levels, respectively."

Table 1

Effect of ECK on root morphology of sorghum at flowering stage"

品种
Variety name
处理
Treatment
根长
Root length (cm)
根表面积
Total surface area (cm2)
根体积
Root volume (cm3)
根系直径
Root diameter (mm)
辽杂19
Liaoza 19
CK 3560.1 a 932.2 a 21.5 a 0.80 a
ECK 3239.8 a 877.2 a 21.6 a 0.85 a
均值Average value 3399.9 B 904.7 A 21.6 A 0.83 B
辽杂37
Liaoza 37
CK 4262.9 a 1046.9 a 22.7 a 0.73 a
ECK 4243.6 a 1015.8 a 21.2 a 0.72 a
均值Average value 4253.2 A 1031.4 A 21.9 A 0.73 A

Table 2

Effect of ECK on root morphology of sorghum at grain-filling stage"

品种
Variety name
处理
Treatment
根长
Root length (cm)
根表面积
Total surface area (cm2)
根体积
Root volume (cm3)
根系直径
Root diameter (mm)
辽杂19
Liaoza 19
CK 2422.8 a 710.9 a 18.9 a 0.86 a
ECK 2654.5 a 732.7 a 18.2 a 0.83 a
均值Average value 2538.6 B 721.8 B 18.6 A 0.84 B
辽杂37
Liaoza 37
CK 3078.2 b 775.5 b 16.9 b 0.75 a
ECK 4587.2 a 1169.7 a 26.2 a 0.77 a
均值Average value 3832.7 A 972.6 A 21.5 A 0.76 A

Table 3

Effect of ECK on root morphology of sorghum at maturity stage in 2021"

品种
Variety name
处理
Treatment
根长
Root length (cm)
根表面积
Total surface area (cm2)
根体积
Root volume (cm3)
根系直径
Root diameter (mm)
辽杂19
Liaoza 19
CK 2188.0 b 563.6 b 12.7 b 0.73 b
ECK 2693.0 a 792.6 a 20.5 a 0.89 a
均值Average value 2440.5 B 678.1 B 16.6 B 0.81 A
辽杂37
Liaoza 37
CK 3621.7 b 972.3 b 22.3 b 0.80 a
ECK 4439.8 a 1232.2 a 29.1 a 0.84 a
均值Average value 4030.8 A 1102.3 A 25.7 A 0.82 A

Table 4

Effect of ECK on root parameter under different diameter of sorghum at flowering stage"

根系形态
Root morphology index
品种
Variety name
处理
Treatment
根系直径Root diameter (mm)
0<D≤0.5 0.5<D≤4 D>4
根长
Root length
(cm plant-1)
辽杂19
Liaoza 19
CK 2379.3 a 997.7 a 181.8 a
ECK 2146.0 a 914.0 a 178.6 a
均值 Average value 2262.6 B 955.9 A 180.2 A
辽杂37
Liaoza 37
CK 3058.8 a 981.2 a 220.9 a
ECK 3054.7 a 985.3 a 201.8 a
均值 Average value 3056.8 A 983.2 A 211.4 A
根表面积
Total surface area
(cm2 plant-1)
辽杂19
Liaoza 19
CK 92.0 a 516.5 a 283.2 a
ECK 82.5 a 470.3 a 286.7 a
均值 Average value 87.2 B 493.4 A 284.9 A
辽杂37
Liaoza 37
CK 111.3 a 541.2 a 347.1 a
ECK 114.7 a 551.6 a 304.7 a
均值 Average value 113.0 A 546.4 A 325.9 A
根体积
Root volume
(cm3 plant-1)
辽杂19
Liaoza 19
CK 0.5 a 29.2 a 35.9 a
ECK 0.4 a 26.3 a 37.9 a
均值 Average value 0.5 B 27.7 A 36.9 A
辽杂37
Liaoza 37
CK 0.6 a 32.2 a 44.5 a
ECK 0.6 a 33.4 a 37.3 a
均值 Average value 0.6 A 32.8 A 40.9 A

Table 5

Effect of ECK on root parameter under different diameter of sorghum at grain-filling stage"

根系形态
Root morphology index
品种
Variety name
处理
Treatment
根系直径Root diameter (mm)
0<D≤0.5 0.5<D≤4 D>4
根长
Root length
(cm plant-1)
辽杂19
Liaoza 19
CK 1527.1 a 754.8 a 140.3 a
ECK 1700.9 a 825.0 a 127.8 a
均值 Average value 1614.0 B 789.9 B 134.1 A
辽杂37
Liaoza 37
CK 2072.7 b 873.3 b 131.1 b
ECK 3176.8 a 1168.0 a 240.4 a
均值 Average value 2624.8 A 1020.6 A 185.8 A
根表面积
Total surface area
(cm2 plant-1)
辽杂19
Liaoza 19
CK 59.1 a 376.2 a 238.6 a
ECK 64.1 a 429.0 a 201.6 a
均值 Average value 61.6 B 402.6 B 220.1 A
辽杂37
Liaoza 37
CK 78.9 b 455.1 b 206.0 b
ECK 117.0 a 628.9 a 372.3 a
均值 Average value 97.9 A 542.0 A 289.1 A
根体积
Root volume
(cm3 plant-1)
辽杂19
Liaoza 19
CK 0.3 a 20.7 a 33.7 a
ECK 0.3 a 24.1 a 26.3 a
均值 Average value 0.3 B 22.4 B 30.0 A
辽杂37
Liaoza 37
CK 0.5 b 25.7 b 26.5 b
ECK 0.6 a 36.7 a 47.0 a
均值 Average value 0.5 A 31.2 A 36.7 A

Table 6

Effect of ECK on root parameter under different diameter of sorghum at maturity stage"

根系形态
Root morphology index
品种
Variety name
处理
Treatment
根系直径Root diameter (mm)
0<D≤0.5 0.5<D≤4 D>4
根长
Root length
(cm plant-1)
辽杂19
Liaoza 19
CK 1416.6 b 676.9 b 93.9 b
ECK 1643.4 a 902.0 a 146.8 a
均值 Average value 1530.0 B 789.4 B 120.3 B
辽杂37
Liaoza 37
CK 2398.8 b 1037.1 a 184.5 b
ECK 3008.4 a 1160.1 a 269.2 a
均值 Average value 2703.6 A 1098.6 A 226.9 A
根表面积
Total surface area
(cm2 plant-1)
辽杂19
Liaoza 19
CK 54.8 b 337.7 b 147.2 b
ECK 65.7 a 469.0 a 223.3 a
均值 Average value 60.3 B 403.3 B 185.3 B
辽杂37
Liaoza 37
CK 90.1 b 544.3 a 291.5 b
ECK 113.3 a 626.4 a 434.0 a
均值 Average value 101.7 A 585.4 A 362.8 A
根体积
Root volume
(cm3 plant-1)
辽杂19
Liaoza 19
CK 0.3 a 18.6 b 18.9 b
ECK 0.4 a 26.5 a 27.7 a
均值 Average value 0.3 B 22.5 B 23.3 B
辽杂37
Liaoza 37
CK 0.5 b 31.3 a 37.8 b
ECK 0.6 a 36.7 a 57.9 a
均值 Average value 0.5 A 34.0 A 47.9 A

Fig. 4

Effect of ethylene-chlormequat-potassium on grain yield of sorghum variety LZ19 and LZ37 CK: control treatment; ECK: ethylene-chlormequat-potassium treatment; LZ37: Liaoza 37; LZ19: Liaoza 19. ns: not significant at the 0.05 probability level. *, **, and *** mean significant differences at the 0.05, 0.01, and 0.001 probability levels, respectively."

[1] 李顺国, 刘猛, 刘斐, 邹剑秋, 陆晓春, 刁现民. 中国高粱产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 471-482.
doi: 10.3864/j.issn.0578-1752.2021.03.002
Li S G, Liu M, Liu F, Zou J Q, Lu X C, Diao X M. Current status and future prospective of sorghum production and seed industry in China. Sci Agric Sin, 2021, 54: 471-482. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.03.002
[2] 邹剑秋. 高粱育种与栽培技术研究新进展. 中国农业科学, 2020, 53: 2769-2773.
doi: 10.3864/j.issn.0578-1752.2020.14.001
Zou J Q, New research progress on sorghum breeding and cultivation techniques. Sci Agric Sin, 2020, 53: 2769-2773. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.14.001
[3] 辛宗绪, 刘志, 赵术伟, 肖继兵, 朱晓东, 吴洪生. 高粱大豆间作对高粱生物性状及产量的影响. 中国种业, 2022, (9): 79-84.
Xin Z X, Liu Z, Zhao S W, Xiao J B, Zhu X D, Wu H S. Effects of sorghum and soybean intercropping on biological characters and yield of sorghum. China Seed Ind, 2022, (9): 79-84. (in Chinese)
[4] 王媛, 王劲松, 董二伟, 武爱莲, 焦晓燕. 长期施用不同剂量氮肥对高粱产量、氮素利用特性和土壤硝态氮含量的影响. 作物学报, 2021, 47: 342-350.
doi: 10.3724/SP.J.1006.2021.04091
Wang Y, Wang J S, Dong E W, Wu A L, Jiao X Y. Effects of long-term nitrogen fertilization with different levels on sorghum grain yield, nitrogen use characteristics and soil nitrate distribution. Acta Agron Sin, 2021, 47: 342-350. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04091
[5] Assefa Y, Roozeboom K, Thompson C, Schlegel A, Stone L, Lingenfelser J E. Corn Grain Sorghum Comparison. New York: Academic Press, 2014. pp 57-70.
[6] Ostmeyer T J, Bahuguna R N, Kirkham M B, Bean S, Jagadish S V K. Enhancing sorghum yield through efficient use of nitrogen- challenges and opportunities. Front Plant Sci, 2022, 13: 845443.
doi: 10.3389/fpls.2022.845443
[7] 朱泓劼. 泸州市糯红高粱产业发展策略研究. 西南财经大学硕士学位论文, 四川成都, 2021.
Zhu H J. Research on the Development Strategy of Glutinous Sorghum Industry in Luzhou City. MS Thesis of Southwestern University of Finance and Economics, Chengdu, Sichuan, China, 2021. (in Chinese with English abstract)
[8] 卢庆善. 高粱学. 北京: 中国农业出版社, 1999. pp 168-169.
Lu Q S. Sorghum. Beijing: China Agriculture Press, 1999. pp 168-169. (in Chinese)
[9] 高士杰, 李继洪, 刘勤来, 于凯, 贾俊英. 高粱的食品与饮品. 现代农业科技, 2012, (22): 279-280.
Gao S J, Li J H, Liu Q L, Yu K, Jia J Y. Sorghum food and drink. Modern Agric Sci Technol, 2012, (22): 279-280. (in Chinese)
[10] 刘晨阳, 张蕙杰, 辛翔飞. 世界高粱供需格局变动及趋势分析. 中国食物与营养, 2020, 26(3): 42-46.
Liu C Y, Zhang H J, Xin X F. Analysis on changes and trends in the world's sorghum supply and demand. Food Nutr China, 2020, 26(3): 42-46. (in Chinese with English abstract)
[11] 陈伟立, 李娟, 朱红惠, 陈杰忠, 姚青. 根际微生物调控植物根系构型研究进展. 生态学报, 2016, 36: 5285-5297.
Chen W L, Li J, Zhu H H, Chen J Z, Yao Q. A review of the regulation of plant root system architecture by rhizosphere microorganisms. Acta Ecol Sin, 2016, 36: 5285-5297. (in Chinese with English abstract)
[12] Herder G D, Isterdael G V, Beeckman T, Smet D I. The roots of a new green revolution. Trends Plant Sci, 2010, 15: 600-607.
doi: 10.1016/j.tplants.2010.08.009 pmid: 20851036
[13] Wu Q P, Chen F J, Chen Y L, Yuan L X, Zhang F S, Mi G H. Root growth in response to nitrogen supply in Chinese maize hybrids released between 1973 and 2009. Sci China Life Sci, 2011, 54: 642-650.
doi: 10.1007/s11427-011-4186-6 pmid: 21748587
[14] 张岁岐, 山仑. 磷素营养对春小麦抗旱性的影响. 应用与环境生物学报, 1998, 4: 115-119.
Zhang S Q, Shan L. The effect of phosphorus nutrition on drought resistance of spring wheat. Chin J Appl Environ Biol, 1998, 4: 115-119. (in Chinese with English abstract)
[15] Zhao Y, Xing L, Wang X, Hou Y J, Gao J, Wang P, Duan C G, Zhu X, Zhu J K. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal, 2014, 7: 53.
doi: 10.1126/scisignal.2005051 pmid: 24894996
[16] 吴奇. 干旱胁迫及氮素对高粱根系形态、生理特性及产量形成的影响. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2017.
Wu Q. Effects of Drought Stress and Nitrogen on Root Morphology, Physiological Characteristics and Yield Formation of Sorghum. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2017. (in Chinese with English abstract)
[17] Albert B, Souleymane S, Pulchérie K C. Effect of zaï and micro dose on root biomass and the grain and straw yield so sorghum at Tangaye in the North region in Burkina Faso. IJEAB, 2018, 3: 1913-1921.
doi: 10.22161/ijeab
[18] Rademacher W. Plant growth regulators: backgrounds and uses in plant production. J Plant Growth Regul, 2015, 34: 845-872.
doi: 10.1007/s00344-015-9541-6
[19] 陈亮, 侯杰, 胡晓蕾, 张纪兆, 王浩达. 植物生长调节剂在土壤中的环境行为综述. 环境科学, 2022, 43(1): 11-25.
Chen L, Hou J, Hu X L, Zhang J Z, Wang H D. Environmental behaviors of plant growth regulators in soil: a review. Environ Sci, 2022, 43(1): 11-25. (in Chinese with English abstract)
[20] 毛景英, 闫振领. 植物生长调节剂调控原理与实用技术. 北京: 中国农业出版社, 2005. pp 12-13.
Mao J Y, Yan Z L. Regulation Principle and Practical Technology of Plant Growth Regulator. Beijing: China Agriculture Press, 2005. pp 12-13. (in Chinese)
[21] 段留生, 田晓莉. 作物化学控制原理与技术. 北京: 中国农业大学出版社, 2005. pp 1-3.
Duan L S, Tian X L. Principles and Techniques of Crop Chemical Control. Beijing: China Agricultural University Press, 2005. pp 1-3. (in Chinese)
[22] 马正波. 矮壮素对不同氮肥水平下华北夏玉米生长及氮素利用的影响. 中国农业科学院硕士学位论文, 北京, 2020.
Ma Z B. Effects of Chlorocholine Chloride on Growth and Nitrogen Use Efficiency of Summer Maize in North China. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2020. (in Chinese with English abstract)
[23] Kamran M. 多效唑和缩节胺对玉米根系生长、光合特性、抗倒伏性和产量的影响. 西北农林科技大学博士学位论文, 陕西杨凌, 2018.
Kamran M. Effects of Paclobutrazol and Mepiquat Chloride on Root Growth, Photosynthetic Characteristics, Lodging Resistance and Yield Responses of Maize (Zea mays L.). PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2018. (in Chinese with English abstract)
[24] 李少昆, 王崇桃. 乙烯利对玉米根系影响的研究. 耕作与栽培, 1990, (4): 64-65, 56.
Li S K, Wang C T. Effect of Ethephon on maize root system. Tillage Cult, 1990, (4): 64-65, 56. (in Chinese)
[25] 张帅, 宁芳芳, 黄收兵, 王璞, 廖树华. 化控处理时期对玉米植株-根系形态及产量的影响. 中国农业大学学报, 2020, 25(2): 1-11.
Zhang S, Ning F F, Huang S B, Wang P, Liao S H. Effects of chemical regulation on timing on plant-root morphology and yield maize. J China Agric Univ, 2020, 25(2): 1-11. (in Chinese with English abstract)
[26] 崔佩佩. 不同施肥对高粱生长及根际微生物功能多样性的影响. 山西大学硕士学位论文, 山西太原, 2018.
Cui P P. Effects of Different Fertilization on the Growth of Sorghum and the Functional Diversity of Rhizosphere Microorganisms. MS Thesis of Shanxi University, Taiyuan, Shanxi, China, 2018. (in Chinese with English abstract)
[27] 黄维娜, 康玉凡. 乙烯在幼苗根生长发育中调控作用的研究进展. 中国农学通报, 2013, 29(12): 6-12.
Huang W N, Kang Y F. Research advances in ethylene regulation to growth and development of seedling root. Chin Agric Sci Bull, 2013, 29(12): 6-12. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.2012-2983
[28] Negi S, Ivanchenko M G, Muday G K. Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J: Mol Biol Cell, 2008, 55: 175-187.
doi: 10.1111/tpj.2008.55.issue-2
[29] 叶德练, 管大海, 张钰石, 张明才, 李召虎. 雨养条件下植物生长调节剂对冬小麦根系生长和产量形成的调控研究. 华北农学报, 2016, 31(2): 125-130.
doi: 10.7668/hbnxb.2016.02.021
Ye D L, Guan D H, Zhang Y S, Zhang M C, Li Z H. Effect of plant growth regulator on the root growth and yield formation of Winter Wheat under rain-fed Condition. Acta Agric Boreali-Sin, 2016, 31(2): 125-130. (in Chinese with English abstract)
doi: 10.7668/hbnxb.2016.02.021
[30] 房孟颖, 闫鹏, 卢霖, 王庆燕, 董志强. 乙矮合剂对不同氮水平夏玉米氮代谢及产量的调控效应. 作物杂志, 2022, (2): 96-103.
Fang M Y, Yan P, Lu L, Wang Q Y, Dong Z Q. Effects of ethylene-chlormequat-potassium on nitrogen metabolism and yield of summer maize under different nitrogen levels. Crops, 2022, (2): 96-103. (in Chinese with English abstract)
[31] 李光彦, 王庆燕, 许艳丽, 卢霖, 焦浏, 董学瑞, 董志强. 双重化控对春玉米灌浆期穗位叶和籽粒蔗糖代谢关键酶活性的影响. 作物学报, 2016, 42: 1215-1223.
doi: 10.3724/SP.J.1006.2016.01215
Li G Y, Wang Q Y, Xu Y L, Lu L, Jiao L, Dong X R, Dong Z Q. Effect of plant growth regulators on key enzymes in sucrose metabolism of ear leaf and grain at filling stage of spring maize. Acta Agron Sin, 2016, 42: 1215-1223. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01215
[32] 卢霖. 乙矮合剂对不同密度夏玉米抗倒防衰的调控效应. 中国农业科学院硕士学位论文, 北京, 2015.
Lu L. Effects of Ethylene-Chlormequat-Potassium on the Stem Lodging Resistance and Antisenescence of Summer Maize under Different Sowing Densities. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015. (in Chinese with English abstract)
[33] 兰宏亮. 东北春玉米密度对根系质量的影响与化学调控机理研究. 中国农业科学院硕士学位论文, 北京, 2011.
Lan H L. Effects of Planting density on Root duality of High-yield Spring maize and Chemical Regulation. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2011. (in Chinese with English abstract)
[34] Bektas H, Hohn C E, Waines J G. Root and shoot traits of bread wheat (Triticum aestivum L.)landraces and cultivars. Euphytica, 2016, 212: 297-311.
doi: 10.1007/s10681-016-1770-7
[35] Lal R. Effects of constant and fluctuating soil temperature on growth, development and nutrient uptake of maize seedlings. Plant Soil, 1974, 40: 589-606.
doi: 10.1007/BF00010516
[36] Knipfer T, Fricke W. Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.). J Exp Bot, 2011, 62: 717-733.
doi: 10.1093/jxb/erq312
[37] Chun L, Mi G H, Li J S, Chen F J, Zhang F S. Genetic analysis of maize root characteristics in response to low nitrogen stress. Plant Soil, 2005, 276: 369-382.
doi: 10.1007/s11104-005-5876-2
[38] 彭云峰, 张吴平, 李春俭. 不同氮吸收效率玉米品种的根系构型差异比较: 模拟与应用. 中国农业科学, 2009, 42: 84-853.
Peng Y F, Zhang W P, Li C J. Relationship between nitrogen efficiency and root architecture of maize plants: simulation and application. Sci Agric Sin, 2009, 42: 843-853. (in Chinese with English abstract)
[39] Postma J A, Dathe A, Lynch J P. The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiol, 2014, 166: 590-602.
doi: 10.1104/pp.113.233916 pmid: 24850860
[40] 袁园, 张怡明, 赵江, 郭丽, 张凤路. 喷施生长调节剂对夏玉米生长发育的影响. 玉米科学, 2011, 19(3): 110-112.
Yuan Y, Zhang Y M, Zhao J, Guo L, Zhang F L. Effects of plant growth regulator on the growth and development of summer maize. J Maize Sci, 2011, 19(3): 110-112. (in Chinese with English abstract)
[41] 田晓东. 乙烯利对夏玉米抗倒伏能力的影响研究. 河北农业大学硕士学位论文, 河北保定, 2014.
Tian X D. Studies on the Effect of Ethephon on Lodging Resistance of Summer Maize. MS Thesis of Agricultural University of Hebei, Baoding, Hebei, China, 2014. (in Chinese with English abstract)
[42] Ghuman L, Ram H. Enhancing wheat grain yield and quality by managing lodging with growth regulators under different nutrition levels. J Plant Nutr, 2021, 44: 1916-1929.
doi: 10.1080/01904167.2021.1884698
[43] 杨钧贺, 刘畅, 钮世辉, 李伟. 茎部形成层赤霉素在植物生长发育中的调控作用. 北京林业大学学报, 2019, 41(7): 68-74.
Yang J H, Liu C, Niu S H, Li W. Regulatory effect of stem cambium gibberellin growth and development on plant. J Beijing For Univ, 2019, 41(7): 68-74. (in Chinese with English abstract)
[44] Kundu S, Dey A, Bandyopadhyay A. Chlorocholine chloride mediated resistance mechanism and protection against leaf spot disease of Stevia rebaudiana Bertoni. Eur J Plant Pathol, 2014, 139: 511-524.
doi: 10.1007/s10658-014-0407-8
[45] 陶群, 刘盈茹, 郭豫灵, 周于毅, 谭伟明, 张明才, 段留生. 冠菌素对玉米基部节间和根部特性的调控研究. 中国农业大学学报, 2019, 24(3): 1-9.
Tao Q, Liu Y R, Guo Y L, Zhou Y Y, Tan W M, Zhang M C, Duan L S. Study of coronatine in regulating the basal internode and root characteristics of maize. J China Agric Univ, 2019, 24(3): 1-9. (in Chinese with English abstract)
[46] 李田甜, 陈国栋, 万素梅, 翟云龙, 刘婵, 马银虎, 王沛娟. 叶面喷施不同配方植物生长调节剂对棉花苗期根系生长的影响. 山东农业科学, 2022, 54(2): 46-50.
Li T T, Chen G D, Wan S M, Zhai Y L, Liu C, Ma Y H, Wang P J. Effects of foliar application of plant growth regulators with different formula on root growth of cotton at seeding stage. Shandong Agric Sci, 2022, 54(2): 46-50 (in Chinese with English abstract).
[47] 房孟颖. 乙矮合剂对不同施氮量下夏玉米生长发育及产量的影响. 中国农业科学院硕士学位论文, 北京, 2021.
Fang M Y. Effects of Ethylene-Chlormequat-Potassium on Summer Maize Nitrogen Utilization. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2021. (in Chinese with English abstract)
[48] 崔凤娟, 王振国, 李岩, 邓志兰, 呼瑞梅, 李默, 徐庆全, 于春国. 高粱茎秆性状及倒伏系数的研究. 作物杂志, 2014, (2): 61-64.
Cui F J, Wang Z G, Li Y, Deng Z L, Hu R M, Li M, Xu Q Q, Yu C G. Study of coronatine in regulating the basal internode and root characteristics of maize. Crops, 2014, (2): 61-64. (in Chinese with English abstract)
[49] 高波. 乙烯利对寒地高产玉米群体结构的调控机制. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2008.
Gao B. Mechanism of Regulation to High-yield Maize Population in Cold Region. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2008. (in Chinese with English abstract)
[50] 李青苗, 杨文钰, 韩惠芳, 关华. 烯效唑浸种对玉米幼苗生长和内源激素含量的影响. 植物生理学通讯, 2005, 41: 752-754.
Li Q M, Yang W Y, Han H F, Guan H. Effects of seed soaking with uniconazole on endogenous hormone content and growth of maize (Zea mays L.)seedling. Plant Physiol Commun, 2005, 41: 752-754. (in Chinese with English abstract)
[51] 马瑞琦, 亓振, 常旭虹, 王德梅, 陶志强, 杨玉双, 冯金凤, 孙敏, 赵广才. 化控剂对冬小麦植株性状及产量品质的调节效应. 作物杂志, 2018, (1): 133-140.
Ma R Q, Qi Z, Chang X H, Wang D M, Tao Z Q, Yang Y S, Feng J F, Sun M, Zhao G C. Regulation effects of growth regulators on plant characters, yield and quality of winter wheat. Crops, 2018, (1): 133-140. (in Chinese with English abstract)
[52] 魏世林. 植物生长调节剂对高粱生长发育的影响及调节剂筛选. 河北农业大学硕士学位论文, 河北保定, 2021.
Wei S L. Effects of Plant Growth Regulators on Growth and Development of Sorghum and Selection of Regulators. MS Thesis of Agricultural University of Hebei, Baoding, Hebei, China, 2021. (in Chinese with English abstract)
[53] 赵建武, 范娜, 白文斌, 彭之东. 不同密度和生长调节剂对高粱产量及农艺性状影响的研究. 中国农学通报, 2017, 33(5): 6-9.
doi: 10.11924/j.issn.1000-6850.casb16030120
Zhao J W, Fan N, Bai W B, Peng Z D. Effects of different densities and growth regulators on yield and agronomic characters of sorghum. Chin Agric Sci Bull, 2017, 33(5): 6-9. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb16030120
[54] 薛金涛. 化学调控对高产性状的调控效应研究. 中国农业科学院硕士学位论文, 北京, 2008.
Xue J T. Effect of Chemical Regulation on High Yield Properties of Maize. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2008. (in Chinese with English abstract)
[1] AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445.
[2] LIU Jie, CAI Cheng-Cheng, LIU Shi-Feng, DENG Meng-Sheng, WANG Xue-Feng, WEN He, LI Luo-Pin, YAN Feng-Jun, WANG Xi-Yao. Function analysis of potato StCYP85A3 in promoting germination and root elongation [J]. Acta Agronomica Sinica, 2023, 49(9): 2462-2471.
[3] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[4] WANG Yuan, WANG Jin-Song, DONG Er-Wei, LIU Qiu-Xia, WU Ai-Lian, JIAO Xiao-Yan. Effect of nitrogen application level on grain starch accumulation at grain filling stage in sorghum spikelets [J]. Acta Agronomica Sinica, 2023, 49(7): 1968-1978.
[5] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[6] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[7] WAN Yi-Man, XIAO Sheng-Hui, BAI Yi-Chao, FAN Jia-Yin, WANG Yan, WU Chang-Ai. Establishment and optimization of a high-efficient hairy-root system in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 1758-1768.
[8] LU Meng-Qi, XIE Ruo-Han, LI Xiang, YANG Ming-Chong, HE Zi-Wei, GAO Jie, ZHAO Xiao-Yan, SHEN Xiang-Ling, CHEN Yan, WANG Ji-Bin, HU Li-Hua, DUAN Ming-Zheng, WANG Ling-Qiang. Relationship of “LabelmeP1.0”-derived vascular parameters with agronomic traits in sorghum [J]. Acta Agronomica Sinica, 2023, 49(7): 1954-1967.
[9] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[10] WANG Yu-Long, YU Ai-Zhong, LYU Han-Qiang, LYU Yi-Tong, SU Xiang-Xiang, WANG Peng-Fei, CHAI Jian. Effects of green manure replanting and returning after wheat on following year’s maize root traits and water use efficiency in oasis irrigation area [J]. Acta Agronomica Sinica, 2023, 49(5): 1350-1362.
[11] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
[12] LI Bang, LIU Chun-Juan, GUO Jun-Jie, WU Yu-Xin, DENG Zhi-Cheng, ZHANG Min, CUI Tong, LIU Chang, ZHOU Yu-Fei. Effects of exogenous tryptophan on root elongation of sorghum seedlings under low nitrogen stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1372-1385.
[13] WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101.
[14] ZHANG Chen-Hui, ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke, HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice [J]. Acta Agronomica Sinica, 2023, 49(4): 1039-1051.
[15] WANG Xue, GU Shu-Bo, LIN Xiang, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of supplemental irrigation with micro-sprinkling hoses and water and fertilizer integration on yield and water and nitrogen use efficiency in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(3): 784-794.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .