欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (6): 937-949.doi: 10.3724/SP.J.1006.2020.93049

• 耕作栽培·生理生化 • 上一篇    下一篇

黄淮海平原南部不同种植体系周年气候资源分配与利用特征研究

周宝元1,葛均筑2,侯海鹏3,孙雪芳4,丁在松1,李从锋1,马玮1,*(),赵明1,*()   

  1. 1中国农业科学院作物科学研究所 / 农业部作物生理生态与栽培重点开放实验室, 北京100081
    2天津农学院农学与资源环境学院, 天津 300384
    3天津市农业发展服务中心种植业技术推广服务部, 天津 300061
    4青岛农业大学农学院, 山东青岛 266109
  • 收稿日期:2019-09-10 接受日期:2019-12-26 出版日期:2020-06-12 发布日期:2020-01-15
  • 通讯作者: 马玮,赵明 E-mail:mawei02@caas.cn;zhaoming@caas.cn
  • 作者简介:E-mail: zhoubaoyuan@caas.cn
  • 基金资助:
    国家重点研发计划项目(2018YFD0300504)

Characteristics of annual climate resource distribution and utilization for different cropping systems in the south of Yellow-Huaihe-Haihe Rivers plain

ZHOU Bao-Yuan1,GE Jun-Zhu2,HOU Hai-Peng3,SUN Xue-Fang4,DING Zai-Song1,LI Cong-Feng1,MA Wei1,*(),ZHAO Ming1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China
    2College of Agronomy & Resource and Environment, Tianjin Agricultural University, Tianjin 300384, China
    3Planting Technology Extension, Department of Tianjin Agricultural Development Service Center, Tianjin 300061, China
    4College of Agronomy, Qingdao Agricultural University, Qingdao 266109, Shandong, China
  • Received:2019-09-10 Accepted:2019-12-26 Online:2020-06-12 Published:2020-01-15
  • Contact: Wei MA,Ming ZHAO E-mail:mawei02@caas.cn;zhaoming@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2018YFD0300504)

摘要:

探明不同种植体系周年产量、气候资源分配及其利用效率特征, 建立周年气候资源优化配置的定量指标, 为进一步提升黄淮海区域周年产量潜力和资源利用效率提供理论依据。本研究利用2011—2015年河南新乡定位试验数据, 定量分析了冬小麦-夏玉米、冬小麦-夏大豆、双季玉米和一季春玉米4个种植体系产量、生物量、干物质产能、光温资源分配及其利用效率。结果表明, 冬小麦-夏玉米和双季玉米体系4年产量、生物量和干物质产能差异均不显著, 但显著高于冬小麦-夏大豆和一季春玉米体系, 平均增幅分别为45.4%~61.5%、37.3%~71.3%和35.7%~70.7%; 双季玉米和一季春玉米体系周年辐射生产效率、籽粒及总生物量光能利用效率均显著高于冬小麦-夏玉米和冬小麦-夏大豆体系, 其中周年辐射生产效率平均增幅为11.8%~66.7%, 籽粒及总生物量光能利用效率分别提高0.13~0.42和0.18~0.69百分点。进一步分析周年气候资源分配特征, 冬小麦-夏玉米体系两季积温分配率分别为45.6%和54.4%, 积温比值为0.8, 双季玉米两季积温分配率为51.4%和48.6%, 积温比值为1.1。综合分析产量和资源利用效率, 冬小麦-夏玉米和双季玉米种植体系可作为黄淮海区种植模式优化布局和农业生产可持续发展的重要支撑, 而明确主要种植体系积温分配率和积温比值等定量指标可为进一步优化周年气候资源配置, 挖掘黄淮海两熟区周年产量潜力和资源利用效率提供重要参考。

关键词: 黄淮海平原南部, 种植体系, 产量, 资源分配, 资源利用效率

Abstract:

Clarifying the characteristics of annual yield, distribution and utilization of climatic resources, and establishing rational quantitative indexes of annual climatic resources distribution for different cropping systems are helpful to provide theoretical basis for further improving annual yield and resource use efficiency in the Yellow-Huaihe-Haihe Rivers plain. In this study, the experiment was conducted from 2011 to 2015 at Xinxiang, Henan province to analyze the grain yield, biomass, dry matter production energy, and distribution and utilization efficiency of climatic resources under four cropping systems, namely winter wheat-summer maize, winter wheat-summer soybean, double maize and one-season spring maize. There were no differences in the annual grain yield, total biomass, and dry matter production energy between the winter wheat-summer maize and double maize cropping systems, but they were significantly higher than those of the winter wheat-summer soybean and one-season spring maize cropping systems, with an average increase of 45.4%-61.5%, 37.3%-71.3%, and 35.77%-70.7%, respectively. The annual radiation production efficiency, radiation use efficiency of grain and total biomass for double maize and one-season spring maize cropping systems were significantly higher than those of the winter wheat-summer maize and winter wheat-summer soybean cropping systems, with an average increase of 11.8%-66.7% in the annual radiation production efficiency, and 0.13-0.42 and 0.18-0.69 percentage points increase in the radiation use efficiency of grain and total biomass, respectively. The accumulative temperature distribution rate for two seasons of winter wheat-summer maize was 45.6% and 54.4%, respectively, while those of double maize was 51.4% and 48.6%, respectively. The accumulative temperature ratio between two seasons was of winter wheat-summer maize 0.8, while that of double maize was 1.1. Considering both yield and resource use efficiency, winter wheat-summer maize and double maize cropping systems can be used to optimize the layout of planting patterns and support the sustainable development of agricultural production in the Yellow-Huaihe-Haihe Rivers plain. Furthermore, clarifying the accumulated temperature distribution rate and the accumulated temperature ratio between two seasons is helpful to optimize climate resource distribution, and further improve the yield potential and the resources use efficiency of double cropping system in the Yellow- Huaihe-Haihe Rivers plain.

Key words: the south of Yellow-Huaihe-Haihe Rivers plain, cropping system, yield, resource distribution, resource use efficiency

图1

2011年10月至2015年11月年新乡日均温度、辐射量及降雨量"

表1

2011-2015年不同种植体系种植方案"

年份
Year
种植体系
Cropping system
作物类型
Crop type
品种
Variety
密度
Plant density
(×104 plant hm-2)
播种期
Sowing date (month/day)
收获期
Harvest date
(month/day)
2011-2012 W-M 冬小麦Winter wheat 矮抗58 Aikang 58 375 10/13 6/5
夏玉米Summer maize 郑单958 Zhengdan 958 7.50 6/12 9/28
W-S 冬小麦Winter wheat 矮抗58 Aikang 58 375 10/13 6/5
夏大豆Summer soybean 中黄35 Zhonghuang 35 22.5 6/13 9/25
M-M 早春季Spring maize 先玉335 Xianyu 335 6.75 3/21 7/20
晚夏季Summer maize 郑单958 Zhengdan 958 7.50 7/20 11/11
M 春玉米Spring maize 先玉335 Xianyu 335 6.00 4/22 9/3
2012-2013 W-M 冬小麦Winter wheat 矮抗58 Aikang 58 450 10/10 6/4
夏玉米Summer maize 郑单958 Zhengdan 958 7.50 6/8 9/25
W-S 冬小麦Winter wheat 矮抗58 Aikang 58 450 10/10 6/2
夏大豆Summer soybean 中黄35 Zhonghuang 35 30.0 6/10 9/25
M-M 早春季Spring maize 先玉335 Xianyu 335 6.75 3/23 7/19
晚夏季Summer maize 郑单958 Zhengdan 958 7.50 7/21 11/15
M 春玉米Spring maize 先玉335 Xianyu 335 6.00 4/25 9/4
2013-2014 W-M 冬小麦Winter wheat 矮抗58 Aikang 58 450 10/10 5/29
夏玉米Summer maize 郑单958 Zhengdan 958 7.50 6/8 9/27
W-S 冬小麦Winter wheat 矮抗58 Aikang 58 450 10/10 6/2
夏大豆Summer soybean 中黄35 Zhonghuang 35 30.0 6/8 9/22
M-M 早春季Spring maize 先玉335 Xianyu 335 6.75 3/25 7/18
晚夏季Summer maize 郑单958 Zhengdan 958 7.50 7/19 11/12
M 春玉米Spring maize 先玉335 Xianyu 335 6.00 4/27 9/8
2014-2015 W-M 冬小麦Winter wheat 矮抗58 Aikang 58 450 10/9 6/5
夏玉米Summer maize 郑单958 Zhengdan 958 7.50 6/13 9/25
W-S 冬小麦Winter wheat 矮抗58 Aikang 58 450 10/9 6/8
夏大豆Summer soybean 中黄35 Zhonghuang 35 30.0 6/15 9/25
M-M 早春季Spring maize 先玉335 Xianyu 335 6.75 3/23 7/21
晚夏季Summer maize 郑单958 Zhengdan 958 7.50 7/22 11/21
M 春玉米Spring maize 先玉335 Xianyu 335 6.00 4/28 9/10

图2

2011-2015年不同种植体系单季及周年产量 A为周年产量; B为一年两熟体系第一季产量; C为一年两熟体系第二季产量; W-M: 冬小麦-夏玉米一年两熟; M-M: 双季玉米一年两熟; W-S: 冬小麦-夏大豆一年两熟; M: 一季春玉米。图柱上不同小写字母表示在0.05水平差异显著。"

图3

2011-2015年不同种植体系周年生物量及干物质产能 A为周年生物量; B为一年两熟体系第一季生物量; C为一年两熟体系第二季生物量; D为周年干物质产能; E为一年两熟体系第一季干物质产能; F: 为一年两熟体系第二季干物质产能; W-M: 冬小麦-夏玉米一年两熟; M-M: 双季玉米一年两熟; W-S: 冬小麦-夏大豆一年两熟; M: 一季春玉米。图柱上不同小写字母表示在0.05水平差异显著。"

表2

2011-2015年不同种植体系季节间积温分配"

年份
Year
处理
Treatment
第一季First season 第二季Second season 周年Annual
积温
AT (°C)
分配率
TDR (%)
积温
AT (°C)
分配率
TDR (%)
积温
AT (°C)
两季比
TR
2011-2012 W-M 2348.5 45.4 2828.7 54.6 5177.2 0.83
M-M 2681.1 52.3 2442.4 47.7 5123.5 1.10
W-S 2348.5 46.6 2692.0 53.4 5040.5 0.87
M 3275.0
2012-2013 W-M 2255.0 43.7 2908.2 56.3 5163.2 0.78
M-M 2562.0 50.0 2558.8 50.0 5120.8 1.00
W-S 2296.0 46.1 2687.5 53.9 4983.5 0.85
M 3334.5
2013-2014 W-M 2267.3 45.3 2736.5 54.7 5003.8 0.83
M-M 2631.7 52.2 2406.5 47.8 5038.2 1.09
W-S 2358.6 47.1 2644.2 52.9 5002.8 0.89
M 3324.6
2014-2015 W-M 2527.4 48.0 2733.4 52.0 5260.8 0.92
M-M 2570.3 51.1 2460.4 48.9 5030.7 1.04
W-S 2467.7 47.6 2716.0 52.4 5183.7 0.91
M 3261.9
平均值Mean W-M 2349.6 b 45.6 b 2801.7 a 54.4 a 5151.3 a 0.8 c
M-M 2611.3 a 51.4 a 2467.0 b 48.6 b 5078.3 a 1.1 a
W-S 2367.7 b 46.9 b 2684.9 a 53.1 a 5052.6 a 0.9 b
M 3299.0 b

表3

2011-2015年不同种植体系季节间辐射分配"

年份
Year
处理
Treatment
第一季First season 第二季Second season 周年Annual
辐射量
Ra (MJ m-2)
分配率
RDR (%)
辐射量
Ra (MJ m-2)
分配率
RDR (%)
辐射量
Ra (MJ m-2)
两季比
RR
2011-2012 W-M 2184.2 55.7 1738.2 44.3 3922.4 1.3
M-M 2062.2 56.8 1570.7 43.2 3632.9 1.3
W-S 2184.2 57.5 1614.0 42.5 3798.1 1.4
M 2110.2
2012-2013 W-M 2131.2 56.5 1638.1 43.5 3769.2 1.3
M-M 1761.0 52.6 1585.2 47.4 3346.2 1.1
W-S 2160.5 58.9 1510.3 41.1 3670.9 1.4
M 1995.6
2013-2014 W-M 2103.4 58.5 1493.2 41.5 3596.6 1.4
M-M 1873.4 58.7 1316.3 41.3 3189.7 1.4
W-S 2173.5 59.8 1462.3 40.2 3635.8 1.5
M 1982.4
2014-2015 W-M 2208.2 57.2 1651.4 42.8 3859.6 1.3
M-M 1974.3 55.2 1600.8 44.8 3575.1 1.2
W-S 2159.6 56.8 1644.8 43.2 3804.4 1.3
M 2128.9
平均值Mean W-M 2156.7 a 57.0 a 1630.2 a 43.0 a 3787.0 a 1.3 a
M-M 1917.7 b 55.8 b 1518.3 b 44.2 a 3436.0 b 1.3 a
W-S 2169.5 a 58.2 a 1557.8 ab 41.8 b 3727.3 a 1.4 a
M 2054.3 c

表4

2011-2015年不同种植体系积温、光能和降水生产效率"

年份
Year
处理
Treatment
积温生产效率
Production efficiency of AT
(kg hm-2 oC-1)
光能生产效率
Production efficiency of Ra
(g MJ-1)
降水生产效率
Production efficiency of Pr
(kg hm-2 mm-1)
第一季
First season
第二季
Second season
周年
Annual
第一季
First season
第二季
Second season
周年
Annual
第一季
First season
第二季
Second season
周年
Annual
2011-2012 W-M 3.8 4.0 3.9 0.42 0.65 0.52 48.5 41.4 44.3
M-M 4.0 3.8 3.9 0.50 0.58 0.54 68.5 56.1 62.0
W-S 3.8 1.7 2.7 0.41 0.29 0.36 47.7 17.3 29.8
M 3.8 0.59 51.5
2012-2013 W-M 3.8 3.9 3.9 0.42 0.62 0.51 88.4 32.2 45.9
M-M 4.1 3.8 4.0 0.58 0.60 0.59 35.3 61.5 44.4
W-S 3.8 1.8 2.7 0.40 0.33 0.37 85.1 15.8 32.9
M 3.6 0.60 31.2
2013-2014 W-M 3.7 4.0 3.9 0.42 0.67 0.52 69.7 22.5 32.9
M-M 4.0 3.8 3.9 0.56 0.69 0.61 60.4 25.7 37.0
W-S 3.7 1.8 2.7 0.40 0.33 0.37 68.5 11.5 24.8
M 3.9 0.65 37.7
2014-2015 W-M 3.5 3.9 3.8 0.40 0.62 0.50 55.5 32.2 40.0
M-M 4.1 3.8 4.0 0.52 0.58 0.55 42.6 35.6 39.0
W-S 3.5 1.4 2.4 0.40 0.24 0.33 53.5 12.3 26.1
M 3.8 0.58 38.7
平均值
Mean
W-M 3.8 b 3.9 a 3.9 a 0.42 b 0.64 a 0.51 b 65.5 a 30.2 b 40.2 b
M-M 4.1 a 3.8 a 4.0 a 0.54 a 0.61 a 0.57 a 50.7 b 38.1 a 43.8 a
W-S 3.7 b 1.7 b 2.6 b 0.40 b 0.30 b 0.36 c 63.8 a 13.6 c 28.1 c
M 3.8 a 0.60 a 38.6 b

表5

2011-2015年不同种植体系光能利用效率"

年份
Year
处理
Treatment
籽粒光能利用效率
Radiation use efficiency of grain (%)
总生物量光能利用效率
Radiation use efficiency of total biomass (%)
第一季
First season
第二季
Second season
周年
Annual
第一季
First season
第二季
Second season
周年
Annual
2011-2012 W-M 0.73 1.17 0.92 1.59 2.21 1.86
M-M 0.91 1.06 0.97 1.86 2.23 2.02
W-S 0.72 0.62 0.68 1.62 1.13 1.41
M 1.07 1.97
2012-2013 W-M 0.74 1.12 0.90 1.60 2.17 1.85
M-M 1.04 1.09 1.06 2.10 2.26 2.17
W-S 0.70 0.70 0.70 1.52 1.23 1.40
M 1.08 1.94
2013-2014 W-M 0.73 1.22 0.93 1.58 2.34 1.90
M-M 1.01 1.25 1.11 1.92 2.62 2.21
W-S 0.72 0.71 0.70 1.49 1.23 1.38
M 1.17 2.28
2014-2015 W-M 0.71 1.12 0.88 1.61 2.12 1.83
M-M 0.95 1.04 0.99 1.83 2.07 1.93
W-S 0.72 0.51 0.62 1.53 1.10 1.34
M 1.05 1.96
平均值
Mean
W-M 0.73 b 1.15 a 0.91 b 1.60 b 2.21 a 1.86 b
M-M 0.97 a 1.10 a 1.04 a 1.92 a 2.28 a 2.08 a
W-S 0.70 b 0.63 b 0.67 c 1.54 b 1.17 b 1.39 c
M 1.09 a 2.04 a
[1] 中华人民共和国农业部. 中国农业统计资料. 北京: 中国农业出版社, 2015.
Ministry of Agriculture of the Peoples’ Republic of China. China Agriculture Statistical Report. Beijing: China Agriculture Press, 2015 (in Chinese).
[2] 蔡剑, 姜东 . 气候变化对中国冬小麦生产的影响. 农业环境科学学报, 2011,30:1726-1733.
Cai J, Jiang D . The effect of climate change on winter wheat production in China. J Agro-Env Sci, 2011,30:1726-1733 (in Chinese with English abstract).
[3] 杨晓光, 刘志娟, 陈阜 . 全球气候变暖对中国种植制度可能影响: I. 气候变暖对中国种植制度北界和粮食产量可能影响的分析. 中国农业科学, 2010,43:329-336.
Yang X G, Liu Z J, Chen F . The possible effects of global warming on cropping systems in China: I. The possible effects of climate warming on northern limits of cropping systems and crop yields in China. Sci Environ Sin, 2010,43:329-336 (in Chinese with English abstract).
[4] Borrás L, Gambín B L . Trait dissection of maize kernel weight: towards integrating hierarchical scales using a plant growth approach. Field Crops Res, 2010,118:1-12.
[5] Cairns J E, Sonder K, Zaidi P H, Verhulst N, Mahuku G, Babu R, Nair S K, Das B, Govaerts B, Vinayan M T, Rashid Z, Noor J J, Devi P, San Vicente F, Prasanna B M . Maize production in a changing climate: impacts, adaptation, and mitigation strategies. Adv Agron, 2012,114:1-58.
[6] Tao F, Yokozawa M, Xu Y L, Hayashi Y, Zhang Z . Climate changes and trends in phenology and yields of field crops in China, 1981-2000. Agric For Meteorol, 2006,138:82-92.
[7] Wang J, Wang E L, Yang X G, Zhang F S, Yin H . Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Climatic Change, 2012,113:825-840.
[8] Warrington I J, Kanemasu E T . Corn growth response to temperature and photoperiod: I. Seedling emergence, tassel initiation and anthesis. Agron J, 1983,75:749-754.
[9] Tollenaar M . Duration of the grain-filling period in maize is not affected by photoperiod and incident PPFD during the vegetative phase. Field Crops Res, 1999,62:15-21.
[10] Chen C Q, Lei C X, Deng A X, Qian C R, Hoogmoed W, Zhang W J . Will higher minimum temperatures increase corn production in Northeast China? An analysis of historical data over 1965-2008. Agric For Meterol, 2011,151:1580-1588.
[11] Liu Y E, Xie R Z, Hou P, Li S K, Zhang H B, Ming B, Long H L, Liang S M . Phenological responses of maize to changes in environment when grown at different latitudes in China. Field Crops Res, 2013,144:192-199.
[12] Loomis R S, Williams W A . Maximum crop productivity: an estimate. Crop Sci, 1963,3:67-72.
[13] 李三爱, 巨辉, 池宝亮 . 作物生产潜力研究进展. 中国农业气象, 2005,26:106-111.
Li S A, Ju H, Chi B L . Reviews on crop potential productivity researches. Chin J Agrometeor, 2005,26:106-111 (in Chinese with English abstract).
[14] 黄川荣, 刘洪 . 气候变化对黄淮海平原冬小麦与夏玉米生产潜力的影响. 中国农业气象, 2011,32:118-123.
Huang C R, Liu H . The effect of the climate change on potential productivity of winter wheat and summer maize in the Huang-Huai-Hai Plain. Chin J Agroneteor, 2011,32:118-123 (in Chinese with English abstract).
[15] 成雪峰, 张凤云 . 黄淮海夏大豆生产现状及发展对策. 大豆科学, 2010,29:157-160.
Cheng X F, Zhang F Y . Present conditions and countermeasures of soybean production in Huang-Huai-Hai regions. Soybean Sci, 2010,29:157-160 (in Chinese with English abstract).
[16] 王树安 . 中国吨粮田建设. 北京: 北京农业大学出版社, 1994.
Wang S A. Construction of the Grain Field with a Yield of 15 tons per Hectare in China. Beijing: Beijing Agricultural University Press, 1994 (in Chinese).
[17] 陈阜, 逄焕成 . 冬小麦/春玉米/夏玉米间套作复合群体的高产机理探讨. 中国农业大学学报, 2000,5(5):12-16.
Chen F, Pang H C . Research on mechanism for maximum yield of intercropping pattern wheat/corn/corn. J China Agric Univ, 2000,5(5):12-16 (in Chinese with English abstract).
[18] 赵秉强, 张福锁, 李增嘉, 李凤超, 劳秀荣, 史春余, 董庆裕, 张骏, 刘嘉军, 杨恩学 . 黄淮海农区集约种植制度的超高产特性研究. 中国农业科学, 2001,34:649-655.
Zhao B Q, Zhang F S, Li Z J, Li F C, Lao X R, Shi C Y, Dong Q Y, Zhang J, Liu J J, Yang E X . Studies on the super-high yield characteristics of three intensive multiple cropping systems in Huanghuaihai area. Sci Agric Sin, 2001,34:649-655 (in Chinese with English abstract).
[19] Meng Q F, Sun Q P, Chen X P, Cui Z L, Yue S C, Zhang F S, Römheld V . Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agric Ecosyst Environ, 2012,146:93-102.
[20] 李立娟, 王美云, 赵明 . 品种对双季玉米早春季和晚夏季的适应性研究. 作物学报, 2011,37:1660-1665
Li L J, Wang M Y, Zhao M . Adaptability of varieties to double-cropping in early spring and late summer. Acta Agron Sin, 2011,37:1660-1665 (in Chinese with English abstract).
[21] 李立娟, 王美云, 薛庆林, 崔彦宏, 侯海鹏, 葛均筑, 赵明 . 黄淮海双季玉米产量性能与资源效率的研究. 作物学报, 2011,37:1229-1234.
Li L J, Wang M Y, Xue Q L, Cui Y H, Hou H P, Ge J Z, Zhao M . Yield performance and resource efficiency of double-cropping maize in the Yellow, Huai and Hai river valleys region. Acta Agron Sin, 2011,37:1229-1234 (in Chinese with English abstract).
[22] 王美云, 任天志, 赵明, 李少昆, 王晓波, 李立娟, 陈长利 . 双季青贮玉米模式物质生产及资源利用效率研究. 作物学报, 2007,33:1316-1323.
Wang M Y, Ren T Z, Zhao M, Li S K, Wang X B, Li L J, Chen C L . Matter production and resources use efficiency of double cropping silage maize system. Acta Agron Sin, 2007,33:1316-1323 (in Chinese with English abstract).
[23] 徐勇, 齐文虎, 谢高地, 章予舒 . 农业自然资源利用效率的因子-能量评价模型及其应用. 资源科学, 2002,24(3):86-91.
Xu Y, Qi W H, Xie G D, Zhang Y S . The factor-energy evaluation model of agricultural natural resources utilization efficiency and its application. Resour Sci, 2002,24(3):86-91 (in Chinese with English abstract).
[24] 周宝元, 马玮, 孙雪芳, 丁在松, 李从锋, 赵明 . 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究. 作物学报, 2019,45:589-600.
Zhou B Y, Ma W, Sun X F, Ding Z S, Li C F, Zhao M . Characteristics of annual climate resource distribution and utilization in high-yielding winter wheat-summer maize double cropping system. Acta Agron Sin, 2019,45:589-600 (in Chinese with English abstract).
[25] 杨羡敏, 曾燕, 邱新法, 姜爱军 . 1960-2000年黄河流域太阳总辐射气候变化规律研究. 应用气象学报, 2005,16:243-247.
Yang X M, Zeng Y, Qiu X F, Jiang A J . The climatic change of solar radiation over the yellow river basin during 1961-2000. J Appl Meteorol Sci, 2005,16:243-247 (in Chinese).
[26] 郑海霞, 封志明, 游松财 . 基于GIS 的甘肃省农业生产潜力研究. 地理科学进展, 2003,22:400-408.
Zheng H X, Feng Z M, You S C . A study on potential land productivity based on GIS technology in Gansu province. Prog Geogr, 2003,22:400-408 (in Chinese with English abstract).
[27] 李卫东, 张孟臣 . 黄淮海夏大豆及品种参数. 北京: 中国农业科学技术出版社, 2006. p 7.
Li W D, Zhang M C. Summer Soybean Varieties and Their Parameters at Huang-Huai-Hai Region. Beijing: Chinese Agricultural Science and Technology Press, 2006. p 7 (in Chinese).
[28] Zhang X Y, Chen S Y, Sun H Y, Wang Y M, Shao L W . Water use efficiency and associated traits in winter wheat cultivars in the North China Plain. Agric Water Manage, 2010,97:1117-1125.
[29] Hu Y K, Moiwo J P, Yang Y H, Han S M, Yang Y M . Agricultural water-saving and sustainable groundwater management in Shijiazhuang irrigation district North China Plain. J Hydrol, 2010,393:219-232.
[30] 吴丹 . 双季玉米在河北平原适应性的系统研究.河北农业大学硕士学位论文, 河北保定, 2014.
Wu D . A Systematic Study on Adaptability of Maize-maize Double Cropping in the Hebei Plain. MS Thesis of Agricultural University of Hebei, Baoing, Hebei, China, 2014 (in Chinese with English abstract).
[31] Xu C L, Zhao H X, Zhang P, Wang Y Y, Huang S B, Meng Q F, Wang P . Delaying wheat seeding time and maize harvest improved water use efficiency in a warm temperature continental monsoon climate. Agron J, 2018,110:1420-1429.
[32] Xiong W, Matthews R, Holman I, Lin E, Xu Y L . Modelling China’s potential maize production at regional scale under climate change. Clim Change, 2007,85:433-451.
[33] Zhou B Y, Yue Y, Sun X F, Wang X B, Wang Z M, Ma W, Zhao M . Maize grain yield and dry matter production responses to variations in weather conditions. Agron J, 2016,108:196-204.
[34] He L, Asseng S, Zhao G, Wu D R, Yang X Y, Zhuang W, Jin N, Yu Q . Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agric For Meteorol, 2015,200:135-143.
[35] Liu Y E, Hou P, Xie R Z, Li S K, Zhang H B, Ming B, Ma D L, Liang S M . Spatial adaptabilities of spring maize to variation of climatic conditions. Crop Sci, 2013,53:1693-1703.
[36] Sun H Y, Zhang X Y, Chen S Y, Pei D, Liu C M . Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the North China Plain. Ind Crops Prod, 2007,25:239-247.
[37] 周宝元, 马玮, 孙雪芳, 高卓晗, 丁在松, 李从锋, 赵明 . 播/收期对冬小麦-夏玉米一年两熟模式周年气候资源分配与利用特征的影响. 中国农业科学, 2019,52:1501-1517.
Zhou B Y, Ma W, Sun X F, Gao Z H, Ding Z S, Li C F, Zhao M . Effects of different sowing and harvest dates of winter wheat-summer maize under double cropping system on the annual climate resource distribution and utilization. Sci Agric Sin, 2019,52:1501-1517 (in Chinese with English abstract).
[38] Liu Y E, Xie R Z, Hou P, Li S K, Zhang H B, Ming B, Long H L, Liang S M . Phenological responses of maize to changes in environment when grown at different latitudes in China. Field Crops Res, 2013,144:192-199.
[39] Dong J, Liu J, Tao F, Xu X L, Wang J B . Spatio-temporal changes in annual accumulated temperature in China and the effects on cropping systems, 1980s to 2000. Climate Res, 2009,40:37-48.
[1] 李瑞杰, 唐会会, 王庆燕, 许艳丽, 王琦, 卢霖, 闫鹏, 董志强, 张凤路. 5-氨基乙酰丙酸和乙烯利对东北春玉米源库碳平衡的调控效应[J]. 作物学报, 2020, 46(7): 1063-1075.
[2] 张玉芹,杨恒山,李从锋,赵明,罗方,张瑞富. 条带耕作错位种植对灌区春玉米产量形成与冠根特征的影响[J]. 作物学报, 2020, 46(6): 902-913.
[3] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[4] 邹京南,于奇,金喜军,王明瑶,秦彬,任春元,王孟雪,张玉先. 外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响[J]. 作物学报, 2020, 46(5): 745-758.
[5] 周磊,刘秋员,田晋钰,朱梦华,程爽,车阳,王志杰,邢志鹏,胡雅杰,刘国栋,魏海燕,张洪程. 甬优系列籼粳杂交稻产量及氮素吸收利用的差异[J]. 作物学报, 2020, 46(5): 772-786.
[6] 金容,李钟,杨云,周芳,杜伦静,李小龙,孔凡磊,袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响[J]. 作物学报, 2020, 46(4): 614-630.
[7] 丁永刚,李福建,王亚华,汤小庆,杜同庆,朱敏,李春燕,朱新开,丁锦峰,郭文善. 稻茬小麦氮高效品种产量构成和群体质量特征[J]. 作物学报, 2020, 46(4): 544-556.
[8] 卫平洋,裘实,唐健,肖丹丹,朱盈,刘国栋,邢志鹏,胡雅杰,郭保卫,高尚勤,魏海燕,张洪程. 安徽沿淮地区优质高产常规粳稻品种筛选及特征特性[J]. 作物学报, 2020, 46(4): 571-585.
[9] 罗俊,林兆里,李诗燕,阙友雄,张才芳,杨仔奇,姚坤存,冯景芳,陈建峰,张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响[J]. 作物学报, 2020, 46(4): 596-613.
[10] 郑飞娜,初金鹏,张秀,费立伟,代兴龙,贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应[J]. 作物学报, 2020, 46(3): 423-431.
[11] 王士红,杨中旭,史加亮,李海涛,宋宪亮,孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响[J]. 作物学报, 2020, 46(3): 395-407.
[12] 解松峰,吉万全,张耀元,张俊杰,胡卫国,李俊,王长有,张宏,陈春环. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3): 365-384.
[13] 杨志远,李娜,马鹏,严田蓉,何艳,蒋明金,吕腾飞,李郁,郭翔,胡蓉,郭长春,孙永健,马均. 水肥“三匀”技术对水稻水、氮利用效率的影响[J]. 作物学报, 2020, 46(3): 408-422.
[14] 刘永晨,司成成,柳洪鹃,张彬彬,史春余. 改善土壤通气性促进甘薯源库间光合产物运转的原因解析[J]. 作物学报, 2020, 46(3): 462-471.
[15] 叶夕苗,程鑫,安聪聪,袁剑龙,余斌,文国宏,李高峰,程李香,王玉萍,张峰. 马铃薯产量组分的基因型与环境互作及稳定性[J]. 作物学报, 2020, 46(3): 354-364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清;李阳生;吴福顺;廖江林;李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[5] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[6] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[7] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[8] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[9] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[10] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .