欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (6): 902-913.doi: 10.3724/SP.J.1006.2020.93053

• 耕作栽培·生理生化 • 上一篇    下一篇

条带耕作错位种植对灌区春玉米产量形成与冠根特征的影响

张玉芹1,杨恒山1,*(),李从锋2,赵明2,罗方1,张瑞富1   

  1. 1内蒙古民族大学农学院, 内蒙古通辽 028042
    2中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2019-09-23 接受日期:2020-01-15 出版日期:2020-06-12 发布日期:2020-01-24
  • 通讯作者: 杨恒山 E-mail:yanghengshan2003@aliyun.com
  • 作者简介:E-mail: zhyq369@126.com
  • 基金资助:
    国家重点研发计划项目(2017YFD0201806);国家自然科学基金项目(31960382)

Effects of strip-till with staggered planting on yield formation and shoot-root characteristics of spring maize in irrigation area of Xiliaohe plain

ZHANG Yu-Qin1,YANG Heng-Shan1,*(),LI Cong-Feng2,ZHAO Ming2,LUO Fang1,ZHANG Rui-Fu1   

  1. 1College of Agronomy, Inner Mongolia University for the Nationalities, Tongliao 028042, Inner Mongolia, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2019-09-23 Accepted:2020-01-15 Online:2020-06-12 Published:2020-01-24
  • Contact: Heng-Shan YANG E-mail:yanghengshan2003@aliyun.com
  • Supported by:
    National Key Research and Development Program of China(2017YFD0201806);National Natural Science Foundation of China(31960382)

摘要:

2017年和2018年在内蒙古通辽市科尔沁区农业高新科技示范园区, 以农华101为供试材料, 采用条带耕作错位种植(苗带耕作, 15 cm+45 cm小双行错位播种, TGCW)和等行常规种植(旋耕, 60 cm等行距, CK)两种模式, 6.75万株 hm -2、8.25万株 hm -2、9.75万株 hm -23个种植密度, 研究条带耕作错位种植模式对西辽河平原灌区春玉米冠根协调特征及产量形成的调控效应。结果表明, 相比于等行距常规种植, 条带耕作错位种植的产量显著提高, 其中8.25万株 hm -2增幅最明显, 2017年和2018年分别提高13.1%和13.8%, 该模式吐丝后干物质积累量及积累率具有明显优势, 较强的物质积累明显延缓了生育后期叶片衰老, 同时穗位上和穗位层透光率显著提高, 生育后期叶面积指数、净光合速率和群体光合势均显著高于CK。该模式生育后期各土层植株根干重显著高于CK, 高密度下更为明显, 且20~60 cm根系占比高, 吐丝期单位根重获得的籽粒产量和成熟期根冠比均具有明显优势。该模式的这些优点是促成西辽河平原灌区春玉米增产的主要原因之一。

关键词: 春玉米, 苗带条耕错位种植, 产量, 根冠特征

Abstract:

A field research was conducted in the Agricultural High-tech Demonstration Park in Horqin District of Tongliao, Inner Mongolia, using the maize variety Nonghua 101 with two cropping modes, including strip-till with staggered planting (seeding strip tillage, 15 cm + 45 cm narrow-double row staggered sowing, TGCW) and conventional tillage with equal row space (rotary tillage with row space of 60 cm, CK), and three planting densities (67,500 plants hm -2, 82,500 plants hm -2, and 97,500 plants hm -2) in 2017 and 2018 to study the effect of strip-till with staggered planting on regulating spring maize yield formation and coordination characteristics of shoot-root in irrigation areas of Xiliao river plain. The model of that strip-till with staggered planting enhanced maize yield by 13.1% and 13.8% in 2017 and 2018, under the planting density 82,500 plants hm -2 compared with CK, respectively. The strip-till with staggered planting showed a distinct advantage on the amount and rate of dry matter accumulation after silking, which obviously delayed the senility of leaves in later growth stage, meanwhile, compared with CK, the light transmittance significantly increased in or above panicle layers. The leaf area index, net photosynthetic rate and population photosynthetic potential in the model of strip-till with staggered planting were higher than those in CK in late growth stage. At later growing stage, the strip-till with staggered planting had significantly higher root dry weight than CK in different soil layers, with the highest root ratio in 20-60 cm, especially under higher planting density. The grain yield against per unit of root weight at silking and root-shoot ratio at maturity had a distinct advantage. In conclusion the strip-till with staggered planting combined with high planting density can increase light transmission rate in above-spike layer in late growing stage, alleviate leaf area decline, increase production capacity, facilitate root growth and increase root ratio in deeper soil layers. Shoot-root coordination under dense planting is one of the main reasons facilitating yield increase of spring maize in irrigation areas of Xiliao river plain.

Key words: spring maize, strip-till with staggered cultivation, maize yield, crown-root characteristics

图1

不同种植模式示意图和苗期田间照片"

表1

不同种植模式下春玉米产量及其构成因素"

年份
Year
种植密度
Plant density
(×104 ear hm-2)
种植模式
Planting pattern
有效穗数
Effective spike
(×104 ear hm-2)
穗粒数
Kernels per
spike
千粒重
1000-kernel
weight (g)
实测产量
Yield
(t hm-2)
2017 6.75 TGCW 6.31 c 554.00 a 397.67 a 11.25 c
CK 6.27 c 522.33 b 386.00 ab 10.56 c
8.25 TGCW 7.62 b 506.33 bc 375.00 abc 12.87 b
CK 7.52 b 486.67 d 356.33 bc 11.38 c
9.75 TGCW 9.02 a 463.00 d 354.67 bc 13.82 a
CK 8.95 a 433.67 e 347.00 c 12.43 b
2018 6.75 TGCW 6.12 c 583.67 a 415.33 a 13.78 b
CK 5.97 c 560.00 b 403.00 ab 12.84 c
8.25 TGCW 7.65 b 554.00 b 386.67 bc 14.76 a
CK 7.71 b 529.33 c 371.00 bc 12.97 c
9.75 TGCW 9.12 a 516.00 c 367.00 cd 15.34 a
CK 9.03 a 485.67 d 355.33 d 13.87 b

表2

不同种植模式下春玉米产量及其构成的方差分析"

年份
Year
差异源
Source of difference
产量
Yield
穗粒数
Kernels per spike
千粒重
1000-kernel weight
F P F P F P
2017 密度Density (D) 41.466** 0.0021 41.318** 0.0234 70.16* 0.0140
种植方式Planting patterns (T) 24.614** 0.0025 49.993** 0.0010 5.37 0.1571
密度×种植方式D×T 1.113 0.3881 0.127 0.8823 0.48 0.6394
2018 密度Density (D) 25.098** 0.0054 16.048** 0.0076 95.84* 0.0103
种植方式Planting patterns (T) 74.245** 0.0001 92.866** 0.0010 11.60 0.0794
密度×种植方式D×T 3.604 0.0938 0.977 0.4172 1.031 0.3916

表3

不同种植模式下春玉米吐丝前、后干物质积累量及积累率"

年份
Year
种植密度
Plant density
(×104 plants hm-2)
种植模式
Planting pattern
吐丝前 Before silking 吐丝后 After silking
积累量
Dry matter
accumulation (t hm-2)
积累率
Accumulation
rate (%)
积累量
Dry matter
accumulation (t hm-2)
积累率
Accumulation
rate (%)
2017 6.75 TGCW 10.85 d 48.62 11.46 b 51.38
CK 10.89 d 50.31 10.76 c 49.69
8.25 TGCW 12.81 b 51.10 12.25 a 48.90
CK 12.43 c 51.19 11.85 b 48.81
9.75 TGCW 13.73 a 52.15 12.60 a 47.85
CK 13.33 b 53.60 11.54 b 46.40
2018 6.75 TGCW 11.94 d 48.46 12.90 c 51.54
CK 11.23 d 47.45 12.44 c 52.55
8.25 TGCW 13.82 c 49.02 14.37 b 50.98
CK 13.15 c 50.44 12.92 c 49.56
9.75 TGCW 15.09 a 49.89 15.15 a 50.11
CK 14.60 b 51.39 13.80 b 48.61

表4

不同种植模式下春玉米叶源特性"

年份
Year
种植密度
Plant density
(×104 plants hm-2)
种植模式
Planting
pattern
叶面积指数
LAI
净光合速率
NPR (μmol CO2 m-2 s-1)
群体光合势
LAD (m2 d hm-2)
吐丝期
Silking
乳熟期
Milking
吐丝期
Silking
乳熟期
Milking
吐丝期-乳熟期
Silking-milking
乳熟期-完熟期
Milking-maturity
2017 6.75 TGCW 4.89 c 4.59 d 32.48 a 30.22 ab 151.68 d 104.94 e
CK 4.71 c 4.18 e 29.72 ab 28.27 b 142.24 d 92.73 f
8.25 TGCW 6.87 b 6.23 b 28.57 b 25.38 c 209.60 c 138.27 c
CK 6.71 b 5.76 c 31.78 a 29.19 a 199.52 c 124.91 d
9.75 TGCW 7.91 a 7.03 a 30.33 a 27.11 b 239.04 a 162.86 a
CK 7.60 a 6.46 b 29.36 a 25.04 c 224.96 b 143.88 b
2018 6.75 TGCW 5.30 c 5.01 e 23.32 a 20.71 b 164.95 d 120.49 e
CK 5.19 c 4.70 f 21.52 ab 18.75 c 158.25 d 112.38 e
吐丝期
Silking
乳熟期
Milking
吐丝期
Silking
乳熟期
Milking
吐丝期-乳熟期
Silking-milking
乳熟期-完熟期
Milking-maturity
8.25 TGCW 6.56 b 6.01 c 19.32 bc 16.97 d 201.17 c 146.54 c
CK 6.38 b 5.56 d 23.43 a 21.62 b 191.05 c 133.99 d
9.75 TGCW 8.07 a 7.21 a 23.63 a 19.61 c 244.63 a 175.97 a
CK 7.81 a 6.70 b 21.37 b 17.02 d 232.16 b 160.24 b

图2

不同种植模式下春玉米不同层位透光率 图中不同小写字母表示同一年份不同处理在0.05水平差异显著; SWS: 穗位上; SWC: 穗位层; SWX: 穗位下。"

表5

不同种植模式下不同土层春玉米根干重"

土层深度
Siol depth
(cm)
种植密度
Plant density
(×104 plants hm-2)
种植模式
Planting pattern
2017 2018
吐丝期
Silking
乳熟期
Milking
完熟期
Maturity
吐丝期
Silking
乳熟期
Milking
完熟期
Maturity
0-20 6.75 TGCW 23.35 a 21.02 a 18.39 a 24.42 a 20.93 a 19.53 a
CK 23.58 a 20.37 b 16.49 b 23.79 a 20.16 a 17.68 b
8.25 TGCW 19.37 b 17.94 c 14.82 c 20.36 b 18.13 b 15.49 c
CK 19.58 b 16.81 d 13.59 d 19.71 b 17.05 c 14.06 d
9.75 TGCW 17.24 c 15.85 e 11.75 e 17.92 c 15.94 d 12.25 e
CK 17.58 c 14.92 f 10.34 f 17.56 c 14.57 e 11.01 f
F
F-value
密度Density (D) 40.21** 167.66** 105.67** 605.89** 318.40** 460.93**
种植方式Planting patterns (T) 7.99 10.87* 15.82** 26.82 44.73* 61.18*
密度×种植方式D×T 0.23 1.05 2.94 0.51 0.40 1.48
20-40 6.75 TGCW 1.31 a 1.13 a 0.78 a 1.44 a 1.16 a 0.88 a
CK 1.01 bc 0.81 c 0.56 c 1.19 bc 1.09 b 0.63 bc
8.25 TGCW 1.25 a 0.97 b 0.68 bc 1.29 b 1.06 b 0.80 a
CK 0.91 c 0.73 d 0.46 d 0.96 d 0.85 c 0.50 d
9.75 TGCW 1.18 b 0.77 cd 0.57 c 1.13 c 0.77 d 0.56 cd
CK 0.75 d 0.52 e 0.35 e 0.88 d 0.63 e 0.37 e
F
F-value
密度Density (D) 13.03* 55.24* 62.32** 39.12** 47.15** 31.43*
种植方式Planting patterns (T) 116.25** 112.83** 195.80** 80.05** 14.66* 64.17**
密度×种植方式D×T 1.15 0.68 0.02 0.47 4.52 3.78
40-60 6.75 TGCW 0.75 a 0.73 a 0.48 a 0.72 a 0.76 a 0.56 a
CK 0.58 b 0.61 b 0.35 b 0.53 c 0.64 b 0.44 b
8.25 TGCW 0.53 bc 0.46 c 0.31 b 0.61 bc 0.52 c 0.36 c
CK 0.38 d 0.38 d 0.23 c 0.44 de 0.34 e 0.25 d
9.75 TGCW 0.47 c 0.43 c 0.26 c 0.51 cd 0.42 d 0.32 d
CK 0.31 d 0.26 e 0.18 d 0.39 e 0.31 e 0.23 e
F
F-value
密度Density (D) 322.43** 45.07** 207.30** 56.75** 241.38** 280.65**
种植方式Planting patterns (T) 318.15** 19.00* 141.69** 134.36** 106.93** 160.60*
密度×种植方式D×T 1.43 4.21 4.62 1.80 2.87 0.52

表6

不同种植模式下不同土层深度春玉米根分布比例"

土层深度
Soil depth
(cm)
种植密度
Plant density
(×104 plants hm-2)
种植模式
Planting pattern
2017 2018
吐丝期
Silking
乳熟期
Milking
完熟期
Maturity
吐丝期
Silking
乳熟期
Milking
完熟期
Maturity
0-20 6.75 TGCW 91.89 91.87 93.59 91.87 91.60 93.13
CK 93.68 93.48 94.77 93.26 92.10 94.29
8.25 TGCW 91.58 92.62 93.74 91.46 91.94 93.03
CK 93.82 93.84 95.17 93.37 93.48 94.94
9.75 TGCW 91.27 92.96 93.40 91.62 93.05 93.30
CK 94.31 95.03 95.12 93.26 93.94 94.83
20-40 6.75 TGCW 5.16 4.94 3.97 5.42 5.08 4.20
CK 4.01 3.72 3.22 4.66 4.98 3.36
8.25 TGCW 5.91 5.01 4.30 5.80 5.41 4.80
CK 4.36 4.05 3.22 4.55 4.66 3.38
9.75 TGCW 6.25 4.52 4.53 5.78 4.50 4.27
CK 4.02 3.31 3.22 4.67 4.06 3.19
40-60 6.75 TGCW 2.95 3.19 2.44 2.71 3.33 2.67
CK 2.30 2.80 2.01 2.08 2.92 2.35
8.25 TGCW 2.51 2.37 1.96 2.74 2.65 2.16
CK 1.82 2.11 1.61 2.08 1.86 1.69
9.75 TGCW 2.49 2.52 2.07 2.61 2.45 2.44
CK 1.66 1.66 1.66 2.07 2.00 1.98

图3

不同种植模式下春玉米根冠比及单位根重获得的籽粒产量"

图4

不同种植方式下根冠生物量与籽粒产量的相关性 a、c为吐丝前, b、d为吐丝后。a, c for before silking; b, d for after silking. *P < 0.05; **P < 0.01. "

[1] 王崇桃, 李少昆, 韩伯棠 . 玉米高产之路与产量潜力挖掘. 科技导报, 2006,24(4):8-11.
Wang C T, Li S K, Han B T . Approaches to high-yielding and yield potential exploration in corn. Sci Technol Rev, 2006,24(4):8-11 (in Chinese with English abstract).
[2] 靳立斌, 张吉旺, 李波, 崔海岩, 董树亭, 刘鹏, 赵斌 . 高产高效夏玉米的冠层结构及其光合特性. 中国农业科学, 2013,46:2430-2439.
Jin L B, Zhang J W, Li B, Cui H Y, Dong S T, Liu P, Zhao B . Canopy structure and photosynthetic characteristics of high yield and high nitrogen efficiency summer maize. Sci Agric Sin, 2013,46:2430-2439 (in Chinese with English abstract).
[3] 杨丽雯, 张永清 . 4种旱作谷类作物根系发育规律的研究. 中国农业科学, 2011,44:2244-2251.
Yang L W, Zhang Y Q . Developing patterns of root systems of four cereal crops planted in dryland areas. Sci Agric Sin, 2011,44:2244-2251 (in Chinese with English abstract).
[4] 陈晓远, 高志红, 罗远培 . 植物根冠关系. 植物生理学通讯, 2005,41:555-562.
Chen X Y, Gao Z H, Luo Y P . Relationship between root and shoot of plants. Plant Physiol Commun, 2005,41:555-562 (in Chinese with English abstract).
[5] 张玉芹, 杨恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 杨升辉 . 超高产春玉米冠层结构及其生理特性. 中国农业科学, 2011,44:4367-4376.
Zhang Y Q, Yang H S, Gao J L, Zhang R F, Wang Z G, Xu S J, Fan X Y, Yang S H . Study on canopy structure and physiological characteristics of super-high yield spring maize. Sci Agric Sin, 2011,44:4367-4376 (in Chinese with English abstract).
[6] 郭家萌, 刘振朝, 高强, 薛吉全, 高聚林, 翟广谦, 柳家友, 孙海昆, 郭新平, 边少锋, 王俊河, 王延波, 张东兴, 陈新平 . 深松对玉米产量和养分吸收的影响. 水土保持学报, 2016,30(2):249-254.
Guo J M, Liu Z C, Gao Q, Xue J Q, Gao J L, Zhai G Q, Liu J Y, Sun H K, Guo X P, Bian S F, Wang J H, Wang Y B, Zhang D X, Chen X P . Effects of subsoiling on yield and nutrient uptake of maize. J Soil & Water Conserv, 2016,30(2):249-254 (in Chinese with English abstract).
[7] 王新兵, 侯海鹏, 周宝元, 孙雪芳, 马玮, 赵明 . 条带深松对不同密度玉米群体根系空间分布的调节效应. 作物学报, 2014,40:2136-2148.
Wang X B, Hou H P, Zhou B Y, Sun X F, Ma W, Zhao M . Effect of strip subsoiling on population root spatial distribution of maize under different planting densities. Acta Agron Sin, 2014,40:2136-2148 (in Chinese with English abstract).
[8] 王洪君, 王楠, 胡宇, 栾天宇, 孙孟琪, 梁烜赫, 赵鑫, 栾天浩, 代永刚, 陈宝玉 . 半干旱区玉米行距调整增密对群体冠层结构及产量的影响. 玉米科学, 2018,26(6):75-78.
Wang H J, Wang N, Hu Y, Luan T Y, Sun M Q, Liang X H, Zhao X, Luan T H, Dai Y G, Chen B Y . Effects of row spacing on canopy structure and yield of maize in semi-arid area. J Maize Sci, 2018,26(6):75-78 (in Chinese with English abstract).
[9] 何冬冬, 杨恒山, 张玉芹 . 扩行距、缩株距对春玉米冠层结构及产量的影响. 中国生态农业学报, 2018,26:397-408.
He D D, Yang H S, Zhang Y Q . Effects of line-spacing expansion and row-spacing shrinkage on canopy structure and yield of spring corn. Chin J Eco-Agric, 2018,26:397-408 (in Chinese with English abstract).
[10] Liu T D, Song F B . Maize photosynthesis and microclimate within the canopies at grain-filling stage in response to narrow-wide row planting patterns. Photosynthetica, 2012,50:215-222.
[11] 魏珊珊, 王祥宇, 董树亭 . 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响. 应用生态学报, 2014,25:441-450.
Wei S S, Wang X Y, Dong S T . Effects of row spacing on canopy structure and grain-filling characteristics of high-yield summer maize. Chin J Appl Ecol, 2014,25:441-450 (in Chinese with English abstract).
[12] Ren B Z, Li X, Dong S T, Liu P, Zhao B, Zhang J W . Soil physical properties and maize root growth under different tillage systems in the North China Plain. Crop J, 2018,6:669-676.
[13] Shao H, Shi D F, Shi W J, Ban X B, Chen Y C, Ren W, Chen F J, Mi G H . Genotypic difference in the plasticity of root system architecture of field-grown maize in response to plant density. Plant Soil, 2019,439:201-217.
[14] 宋日, 刘利, 吴春胜, 马丽艳 . 根系生长空间对玉米生长和养分吸收的影响. 西北农林科技大学学报, 2009,37(6):58-64.
Song R, Liu L, Wu C S, Ma L Y . The effect of root growth space on maize growth and nutrient absorption. J Northwest A&F Univ, 2009,37(6):58-64 (in Chinese with English abstract).
[15] 张玉芹, 杨恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 毕文波 . 超高产春玉米的根系特征. 作物学报, 2011,37:735-743.
Zhang Y Q, Yang H S, Gao J L, Zhang R F, Wang Z G, Xu S J, Fan X Y, Bi W B . Root characteristics of super high-yield spring maize. Acta Agron Sin, 2011,37:735-743 (in Chinese with English abstract).
[16] Duvick D N . The contribution of breeding to yield advances in maize ( Zea mays L.). Adv Agron, 2005,86:83-145.
[17] 杨哲 . 栽培措施对春玉米产量差和效率差的贡献及其调控机制. 内蒙古农业大学硕士学位论文, 内蒙古通辽, 2018.
Yang Z . Contribution of Management Factors to the Gaps of Yield and Resource Use Efficiency of Spring Maize and Regulating Pathway. MS Thesis of Inner Mongolia Agricultural University, Tongliao, Inner Mongolia, China, 2018 (in Chinese with English abstract).
[18] 赵明, 马玮, 周宝元, 孙雪芳 . 实施玉米推茬清垄精播技术实现高产高效与环境友好生产. 作物杂志, 2016, ( 3):1-5.
Zhao M, Ma W, Zhou B Y, Sun X F . Using integrated technology of stubble-shoving, ridge-cleaning and precise sowing to achieve the high yield, high efficiency and environment-friendly in maize production. Crops, 2016, ( 3):1-5 (in Chinese with English abstract).
[19] 魏建军, 罗赓彤, 张力, 潘文远 . 超高产大豆主要群体生理参数与经济产量关系的研究. 中国油料作物学报, 2007,29:272-276.
Wei J J, Luo G T, Zhang L, Pan W Y . A study of relation between canopy physiological parameter and seed yield in super high-yield soybean. Chin J Oil Crop Sci, 2007,29:272-276 (in Chinese with English abstract).
[20] 李潮海, 刘奎 . 不同产量水平玉米杂交种生育后期光合效率比较分析. 作物学报, 2002,28:379-383.
Li C H, Liu K . Analysis of photosynthesis efficiency of maize hybrids with different yield in the later growth stage. Acta Agron Sin, 2002,28:379-383 (in Chinese with English abstract).
[21] Maddonni G A, Otegui M E, Cirilo A G . Plant population density, rows pacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Res, 2001,71:183-193.
[22] 苌建峰, 张海红, 李鸿萍, 董朋飞, 李潮海 . 不同行距配置方式对夏玉米冠层结构和群体抗性的影响. 作物学报, 2016,42:104-112.
Chang J F, Zhang H H, Li H P, Dong P F, Li C H . Effects of different row spaces on canopy structure and resistance of summer maize. Acta Agron Sin, 2016,42:104-112 (in Chinese with English abstract).
[23] 李少昆, 王崇桃 . 中国玉米生产技术的演变与发展. 中国农业科学, 2009,42:1941-1951.
Li S K, Wang C T . Evolution and development of maize production techniques in China. Sci Agric Sin, 2009,42:1941-1951 (in Chinese with English abstract).
[24] 杨罗锦, 陶洪斌, 王璞 . 种植密度对不同株型玉米生长及根系形态特征的影响. 应用与环境生物学报, 2012,18:1009-1013.
Yang L J, Tao H B, Wang P . Effect of planting density on plant growth and root morphology of maize. Chin J Appl Environ Biol, 2012,18:1009-1013 (in Chinese with English abstract).
[25] 李宗新, 陈源泉, 王庆成, 刘开昌, 高旺盛, 隋鹏 . 高产栽培条件下种植密度对不同类型玉米品种根系时空分布动态的影响. 作物学报, 2012,38:1286-1294.
Li Z X, Chen Y Q, Wang Q C, Liu K C, Gao W S, Sui P . Influence of planting density on root spatio-temporal distribution of different types of maize under high-yielding cultivation conditions. Acta Agron Sin, 2012,38:1286-1294 (in Chinese with English abstract).
[26] 张瑞富, 杨恒山, 高聚林, 张玉芹, 王志刚, 范秀艳, 毕文波 . 深松对春玉米根系形态特征和生理特性的影响. 农业工程学报, 2015,31(5):78-84.
Zhang R F, Yang H S, Gao J L, Zhang Y Q, Wang Z G, Fan X Y, Bi W B . Effect of subsoiling on root morphological and physiological characteristics of spring maize. Trans CSAE, 2015,31(5):78-84 (in Chinese with English abstract).
[27] 刘朝巍, 张恩和, 谢瑞芝, 刘武仁, 李少昆 . 玉米宽窄行交替休闲保护性耕作的根系和光分布特征研究. 中国生态农业学报, 2012,20:203-209.
Liu C W, Zang E H, Xie R Z, Liu W R, Li S K . Effect of conservation tillage of wide/narrow row planting on maize root and transmittance distribution. Chin J Eco-Agric, 2012,20:203-209 (in Chinese with English abstract).
[28] 梁熠, 何文寿, 代晓华, 马琨, 侯贤清 . 株行配置对春玉米根冠空间分布及产量的影响. 玉米科学, 2016,24(6):97-102.
Liang Y, He W S, Dai X H, Ma K, Hou X Q . Effects of planting density and row spacing on root-shoot spatial distribution and grain yield of spring maize. J Maize Sci, 2016,24(6):97-102 (in Chinese with English abstract).
[29] Brouwer R . Functional equilibrium: sense or nonsense. Neth J Agric Sci, 1983,31:335-348.
[30] 肖继兵, 孙占祥, 杨久廷, 张玉龙, 郑家明, 刘洋 . 半干旱区中耕深松对土壤水分和作物产量的影响. 土壤通报, 2011,42:709-714.
Xiao J B, Sun Z X, Yang J T, Zhang Y L, Zheng J M, Liu Y . Effect of subsoiling on soil water and crop yield in semi-arid area. Chin J Soil Sci, 2011,42:709-714 (in Chinese with English abstract).
[31] 王新兵, 侯海鹏, 周宝元, 孙雪芳, 马玮, 赵明 . 条带深松对不同密度玉米群体根系空间分布的调节效应. 作物学报, 2014,40:2136-2148.
Wang X B, Hou H P, Zhou B Y, Sun X F, Ma W, Zhao M . Effect of strip subsoiling on population root spatial distribution of maize under different planting densities. Acta Agron Sin, 2014,40:2136-2148 (in Chinese with English abstract).
[1] 李瑞杰, 唐会会, 王庆燕, 许艳丽, 王琦, 卢霖, 闫鹏, 董志强, 张凤路. 5-氨基乙酰丙酸和乙烯利对东北春玉米源库碳平衡的调控效应[J]. 作物学报, 2020, 46(7): 1063-1075.
[2] 周宝元,葛均筑,侯海鹏,孙雪芳,丁在松,李从锋,马玮,赵明. 黄淮海平原南部不同种植体系周年气候资源分配与利用特征研究[J]. 作物学报, 2020, 46(6): 937-949.
[3] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[4] 邹京南,于奇,金喜军,王明瑶,秦彬,任春元,王孟雪,张玉先. 外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响[J]. 作物学报, 2020, 46(5): 745-758.
[5] 白伟,孙占祥,张立祯,郑家明,冯良山,蔡倩,向午燕,冯晨,张哲. 耕层构造对土壤三相比和春玉米根系形态的影响[J]. 作物学报, 2020, 46(5): 759-771.
[6] 周磊,刘秋员,田晋钰,朱梦华,程爽,车阳,王志杰,邢志鹏,胡雅杰,刘国栋,魏海燕,张洪程. 甬优系列籼粳杂交稻产量及氮素吸收利用的差异[J]. 作物学报, 2020, 46(5): 772-786.
[7] 丁永刚,李福建,王亚华,汤小庆,杜同庆,朱敏,李春燕,朱新开,丁锦峰,郭文善. 稻茬小麦氮高效品种产量构成和群体质量特征[J]. 作物学报, 2020, 46(4): 544-556.
[8] 卫平洋,裘实,唐健,肖丹丹,朱盈,刘国栋,邢志鹏,胡雅杰,郭保卫,高尚勤,魏海燕,张洪程. 安徽沿淮地区优质高产常规粳稻品种筛选及特征特性[J]. 作物学报, 2020, 46(4): 571-585.
[9] 金容,李钟,杨云,周芳,杜伦静,李小龙,孔凡磊,袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响[J]. 作物学报, 2020, 46(4): 614-630.
[10] 罗俊,林兆里,李诗燕,阙友雄,张才芳,杨仔奇,姚坤存,冯景芳,陈建峰,张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响[J]. 作物学报, 2020, 46(4): 596-613.
[11] 郑飞娜,初金鹏,张秀,费立伟,代兴龙,贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应[J]. 作物学报, 2020, 46(3): 423-431.
[12] 王士红,杨中旭,史加亮,李海涛,宋宪亮,孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响[J]. 作物学报, 2020, 46(3): 395-407.
[13] 解松峰,吉万全,张耀元,张俊杰,胡卫国,李俊,王长有,张宏,陈春环. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3): 365-384.
[14] 刘永晨,司成成,柳洪鹃,张彬彬,史春余. 改善土壤通气性促进甘薯源库间光合产物运转的原因解析[J]. 作物学报, 2020, 46(3): 462-471.
[15] 叶夕苗,程鑫,安聪聪,袁剑龙,余斌,文国宏,李高峰,程李香,王玉萍,张峰. 马铃薯产量组分的基因型与环境互作及稳定性[J]. 作物学报, 2020, 46(3): 354-364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清;李阳生;吴福顺;廖江林;李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[5] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[6] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[7] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[8] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[9] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[10] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .