欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (5): 745-758.doi: 10.3724/SP.J.1006.2020.94111

• 耕作栽培·生理生化 • 上一篇    下一篇

外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响

邹京南,于奇,金喜军,王明瑶,秦彬,任春元,王孟雪,张玉先()   

  1. 黑龙江八一农垦大学农学院, 黑龙江大庆 163319
  • 收稿日期:2019-08-01 接受日期:2019-12-26 出版日期:2020-05-12 发布日期:2020-01-14
  • 通讯作者: 张玉先 E-mail:zyx_lxy@126.com
  • 作者简介:E-mail: zoujingnan222@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2018YFD0201000);国家现代农业产业技术体系建设专项(CARS-04-01A);黑龙江省自然科学基金项目(C2017049);黑龙江省农垦总局重点科研计划项目(HNK135-02-06);国家重点研究开发项目子课题“东北地区抗旱灌溉与优质高产春大豆关系的研究”项目资助(2018YFD1000905)

Effects of exogenous melatonin on physiology and yield of soybean during seed filling stage under drought stress

Jing-Nan ZOU,Qi YU,Xi-Jun JIN,Ming-Yao WANG,Bin QIN,Chun-Yuan REN,Meng-Xue WANG,Yu-Xian ZHANG()   

  1. College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2019-08-01 Accepted:2019-12-26 Online:2020-05-12 Published:2020-01-14
  • Contact: Yu-Xian ZHANG E-mail:zyx_lxy@126.com
  • Supported by:
    This study was supported by the National Key R&D Program(2018YFD0201000);the China Agricultural Research System(CARS-04-01A);the Natural Science Foundation of Heilongjiang Province(C2017049);the Heilongjiang Provincial Land Reclamation Bureau Key Research Project(HNK135-02-06);the National Key Research and Development Project Sub-Project: Research on the Relationship between Drought-Resistant Irrigation and High-Quality and High-Yield Spring Soybean in Northeast China.(2018YFD1000905)

摘要:

干旱胁迫降低大豆产量, 探究提高大豆耐旱能力和降低产量损失的机制对大豆生产具有重要意义。施褪黑素能缓解干旱胁迫对植株生长的抑制和氧化损伤。本试验于2017—2018年研究叶面喷施褪黑素对干旱胁迫下大豆鼓粒期叶片光合、抗逆、碳氮代谢和产量的影响表明, 外源褪黑素提高干旱胁迫下大豆叶片抗氧化酶活性, 抑制活性氧的产生和细胞膜损伤, 缓解干旱胁迫对光合能力的抑制, 提高碳氮同化能力, 最终缓解干旱胁迫造成的产量损失。与干旱胁迫相比, 褪黑素处理下单株荚数、单株粒数和百粒重两年平均提高了2.9%、0.8%和17.2%, 产量(单株粒重)平均提高了14.7%。

关键词: 褪黑素, 大豆, 干旱, 光合, 抗氧化系统, 碳氮代谢, 产量

Abstract:

Drought stress reduces soybean yield. Exploring the mechanism of improving drought tolerance and reducing yield loss is of great significance for soybean production. Melatonin application can alleviate the growth inhibition and oxidative damage of plants under drought stress. In this experiment, the effects of foliar application of melatonin on photosynthesis, stress resistance, carbon and nitrogen metabolism and yield of soybean during seed filling stage under drought stress were studied in 2017-2018. The application exogenous melatonin increased the antioxidant enzyme activity, inhibited the production of reactive oxygen species, decreased cell membrane damage under drought stress, alleviated the inhibition of photosynthetic capacity by drought stress, improved the carbon and nitrogen assimilation ability, and alleviated the yield loss caused by drought stress. Compared with drought stress, the treatment of melatonin increased the number of pods per plant, the grain number per plant and the hundred grain weight by 2.9%, 0.8%, and 17.2% on average of two years, respectively, and the yield (grain weight per plant) increased by 14.7%.

Key words: melatonin, soybean, drought, photosynthesis, antioxidant system, carbon and nitrogen metabolism, yield

图1

外源褪黑素对干旱胁迫下大豆鼓粒期叶片光合参数和Rubisco活性的影响 A: 净光合速率; B: 气孔导度; C: 蒸腾速率; D: 胞间二氧化碳浓度; E: 水分利用率; F: 核酮糖-1,5-二磷酸羧化酶。WW: 鼓粒期开始保持80%田间持水量叶片喷施5 d清水对照; D: 鼓粒期开始停止供水保持50%田间持水量叶片喷施5 d清水干旱胁迫处理; MT+D: 鼓粒期开始停止供水保持50%田间持水量叶片喷施5 d 100 μmol L-1褪黑素加干旱胁迫处理。10: 不同处理10 d后第1次取样, WW维持80%田间持水量, D和MT+D停止供水达到50%田间持水量; 17: 不同处理17 d后第2次取样, WW维持80%田间持水量, D和MT+D第1次取样结束后维持50%田间持水量; 24: 不同处理24 d后第3次取样, WW维持80%田间持水量, D和MT+D第2次取样结束后继续维持50%田间持水量。标以不同字母的柱值在P < 0.05水平上差异显著。"

图2

外源褪黑素对干旱胁迫下大豆鼓粒期叶片叶绿素荧光参数的影响 A: 光系统II光能转换效率; B: 光化学猝灭系数; C: 表观电子传递速率; D: 非光化学猝灭系数; E: 光系统II实际光化学效率; F: 光系统II实际最大光能转化效率。标以不同字母的柱值在P < 0.05水平上差异显著。缩写同图1。 "

图3

外源褪黑素对干旱胁迫下大豆鼓粒期叶片碳代谢的影响 A: 蔗糖磷酸合酶; B: 蔗糖合酶; C: 酸性转化酶; D: 中性转化酶; E: 可溶性糖; F: 淀粉; G: 果糖; H: 蔗糖。标以不同字母的柱值在P < 0.05水平上差异显著。缩写同图1。"

图4

外源褪黑素对干旱胁迫下大豆鼓粒期叶片氮代谢的影响 A: 铵态氮; B: 硝态氮; C: 硝酸还原酶; D: 谷氨酰胺合成酶; E: 谷氨酸脱氢酶; F: 谷氨酸合成酶。标以不同字母的柱值在P < 0.05水平上差异显著。缩写同图1。"

图5

外源褪黑素对干旱胁迫下大豆鼓粒期叶片抗氧化酶活性的影响 A: 超氧化物歧化酶; B: 过氧化物酶; C: 过氧化氢酶; D: 抗坏血酸过氧化物酶; E: 谷胱甘肽还原酶; F: 谷胱甘肽过氧化物酶; G: 单脱氢抗坏血酸还原酶; H: 脱氢抗坏血酸还原酶。标以不同字母的柱值在P < 0.05水平上差异显著。缩写同图1。"

图6

外源褪黑素对干旱胁迫下大豆鼓粒期叶片抗氧化剂含量的影响 A: 谷胱甘肽; B: 抗坏血酸。标以不同字母的柱值在P < 0.05水平上差异显著。缩写同图1。"

图7

外源褪黑素对干旱胁迫下大豆鼓粒期叶片膜脂过氧化的影响 A: 超氧阴离子产生速率; B: 过氧化氢含量; C: 丙二醛含量; D: 相对电导率。标以不同字母的柱值在P < 0.05水平上差异显著。缩写同图1。"

表1

外源褪黑素对干旱胁迫下鼓粒期大豆产量以及减产率和缓解率的影响"

年份
Year
处理
Treatment
单株荚数
Pods per plant
单株粒数
Seeds per pod
单株粒重
Grain weight
per plant (g)
百粒重
Hundred grain
weigh (g)
减产率
Yield reduction
rate (%)
缓解率
Remission rate
(%)
2017 MT+D 24.80±1.52 a 46.63±6.92 a 9.75±0.83 b 16.55±2.21 b
D 24.32±2.15 a 46.27±4.47 a 8.61±1.42 bc 14.01±1.19 c -24.6 9.9
WW 25.80±1.40 a 47.70±3.40 a 11.42±1.89 a 20.78±0.83 a
2018 MT+D 22.08±0.64 ab 42.53±1.90 ab 7.01±0.72 c 16.11±1.24 b
D 21.23±0.75 ab 42.13±1.98 ab 6.03±0.43 cd 13.76±0.91 c -36.3 10.3
WW 22.54±0.14 ab 42.67±2.63 ab 9.47±0.27 b 21.52±0.91 a
[1] 李琬 . 干旱对大豆根系生育的影响及灌溉缓解效应研究进展. 草业学报, 2019,28(4):192-202.
Li W . Research progress in understanding the effects of drought on growth of the soybean root system and the efficiency of irrigation. Acta Pratac Sin, 2019,28(4):192-202 (in Chinese with English abstract).
[2] Meckel L, Egli D B, Phillips R E, Radcliffe D, Leggett J E . Effect of moisture stress on seed growth in soybeans. Agron J, 1984,76:647-650.
doi: 10.1371/journal.pone.0214977 pmid: 31498795
[3] Westgate M E, Peterson C M . Flower and pod development in water deficient soybean. J Exp Bot, 1993,258:109-117.
[4] Getachew M . Influence of soil water deficit and phosphorus application on phosphorus uptake and yield of soybean (Glycine max L.) at Dejen, North-West Ethiopia. Am J Plant Sci, 2014,5:1889-1906.
[5] Kangasjärvi S, Neukermans J, Li S, Aro E M, Noctor G . Photosynthesis, photorespiration, and light signalling in defence responses. J Exp Bot, 2012,63:1619-1636.
doi: 10.1093/jxb/err402 pmid: 22282535
[6] Tikkanen M, Grieco M, Aro E M . Novel insights into plant light-harvesting complex II phosphorylation and ‘state transitions’. Trends Plant Sci, 2011,16:126-131.
doi: 10.1016/j.tplants.2010.11.006 pmid: 21183394
[7] Manavalan L P, Guttikonda S K, Phan Tran L S, Nguyen H T . Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol, 2009,50:1260-1276.
doi: 10.1093/pcp/pcp082 pmid: 19546148
[8] 邹京南, 曹亮, 王梦雪, 金喜军, 任春元, 王明瑶, 于奇, 张玉先 . 外源褪黑素对干旱胁迫下大豆结荚期光合及生理的影响. 生态学杂志, 2019,38:2709-2718.
Zou J N, Cao L, Wang M X, Jin X J, Ren C Y, Wang M Y, Yu Q, Zhang Y X . Effects of exogenous melatonin on photosynthesis and physiology of soybean seedlings under drought stress. Chin J Ecol, 2019,38:2709-2718 (in Chinese with English abstract).
[9] 丁秀文, 张国良, 戴其根, 朱青 . 1,2,4-三氯苯胁迫对水稻分蘖盛期植株生长和生理特性的影响. 作物学报, 2014,40:487-496.
doi: 10.3724/SP.J.1006.2014.00487
Ding X W, Zhang G L, Dai Q G, Zhu Q . Effects of 1,2,4-trichlorobenzene on growth and physiological characteristics of rice at maximum tillering stage. Acta Agron Sin, 2014,40:487-496 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.00487
[10] 马晓寒, 张杰, 张环纬, 陈彪, 温心怡, 许自成 . 通过外源MeJA抑制H2O2积累提高烟草的耐冷性. 作物学报, 2019,45:411-418.
Ma X H, Zhang J, Zhang H W, Chen B, Wen X Y, Xu Z C . Exogenous MeJA improves cold tolerance of tobacco by inhibiting H2O2 accumulation. Acta Agron Sin, 2019,45:411-418 (in Chinese with English abstract).
[11] Gil-Quintana E, Larrainzar E, Seminario A, Díaz-Leal J L, Alamillo J M, Pineda M, Arrese-Igor C, Wienkoop S, González E M . González E MLocal inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean. J Exp Bot, 2013,64:2171-2182.
doi: 10.1093/jxb/ert074 pmid: 23580751
[12] Larrainzar E, Molenaar J A, Wienkoop S, Gil-Quintana E, Alibert B, Limami A M, Arrese-Igor C, Gonzalez E M . Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways inMedicago truncatula roots and nodules. Plant Cell Environ, 2014,37:2051-2063.
doi: 10.1111/pce.12285
[13] Peleg Z, Blumwald E . Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol, 2011,14:290-295.
doi: 10.1016/j.pbi.2011.02.001 pmid: 21377404
[14] Tan D X, Hardeland R, Manchester L C, Korkmaz A, Ma S, Rosales-Corral S, Reiter R J . Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot, 2012,63:577-597.
doi: 10.1093/jxb/err256 pmid: 22016420
[15] Huang B, Chen Y E, Zhao Y Q, Ding C B, Liao J Q, Hu C, Zhou L J, Zhang Z W, Yuan S, Yuan M . Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Front Plant Sci, 2019,10:677.
doi: 10.3389/fpls.2019.00677 pmid: 31178885
[16] 杨小龙, 须晖, 李天来, 王蕊 . 外源褪黑素对干旱胁迫下番茄叶片光合作用的影响. 中国农业科学, 2017,50:3186-3195.
Yang X L, Xu H, Li T L, Wang R . Effects of exogenous melatonin on photosynthesis of tomato leaves under drought stress. Sci Agric Sin, 2017,50:3186-3195 (in Chinese with English abstract).
[17] Cui G, Sun F, Gao X, Xie K, Zhang C, Liu S, Xi Y . Proteomic analysis of melatonin-mediated osmotic tolerance by improving energy metabolism and autophagy in wheat (Triticum aestivum L.). Planta, 2018,248:69-87.
doi: 10.1007/s00425-018-2881-2 pmid: 29564630
[18] Cui G, Zhao X, Liu S, Sun F, Zhang C, Xi Y . Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiol Biochem, 2017,118:138-149.
doi: 10.1016/j.plaphy.2017.06.014 pmid: 28633086
[19] Liu J, Zhang R, Sun Y, Liu Z, Jin W, Sun Y . The beneficial effects of exogenous melatonin on tomato fruit properties. Sci Hortic, 2016,207:14-20.
doi: 10.1016/j.scienta.2016.05.003
[20] Zou J N, Jin X J, Zhang Y X, Ren C Y, Zhang M C, Wang M X . Effects of melatonin on photosynthesis and soybean seed growth during grain filling under drought stress. Photosynthetica, 2019,57:512-520.
doi: 10.32615/ps.2019.066
[21] Parry M A J, Andralojc P J, Parmar S, Keys A J, Habash D, Paul M J, Alred R, Quick W P, Servaites J C . Regulation of Rubisco by inhibitors in the light. Plant Cell Environ, 1997,20:528-534.
doi: 10.1046/j.1365-3040.1997.d01-85.x
[22] Kumar G M, Knowles N R . Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers. Plant Physiol, 1993,102:115-124.
doi: 10.1104/pp.102.1.115 pmid: 12231802
[23] Su G, An Z, Zhang W, Liu Y . Light promotes the synthesis of lignin through the production of H2O2 mediated by diamine oxidases in soybean hypocotyls. J Plant Physiol, 2005,162:1297-1303.
doi: 10.1016/j.jplph.2005.04.033 pmid: 16425447
[24] Ke D, Sun G, Wang Z . Effects of superoxide radicals on ACC synthase activity in chilling-stressed etiolated mungbean seedlings. Plant Growth Regul, 2007,51:83-91.
doi: 10.1007/s10725-006-9150-2
[25] Shan C, Liang Z . Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci, 2010,178:130-139.
doi: 10.1016/j.plantsci.2009.11.002
[26] Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F . Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol, 1999,119:1091-1100.
doi: 10.1104/pp.119.3.1091 pmid: 10069848
[27] Li H, Chang J, Chen H, Wang Z, Gu X, Wei C, Zhang Y, Ma J, Yang J, Zhang X . Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci, 2017,8:295.
doi: 10.3389/fpls.2017.00295 pmid: 28298921
[28] 徐龙光 . 黄帝手植柏的组织培养和硝酸还原酶活性测定. 西北农林科技大学硕士学位论文, 陕西杨凌, 2014.
Xu L G . Tissue Culture and Nitrate Reductase Activity Determination of P. sinensis. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2014 (in Chinese with English abstract).
[29] 屈春媛, 张玉先, 金喜军, 任春元, 张明聪, 王孟雪, 王彦宏, 李菁华, 郑浩宇, 邹京南 . 干旱胁迫下外源ABA对鼓粒期大豆产量及氮代谢关键酶活性的影响. 中国农学通报, 2017,33(34):26-31.
Qu C Y, Zhang Y X, Jin X J, Ren C Y, Zhang M C, Wang M X, Wang Y H, Li J H, Zheng H Y, Zou J N . Effect of exogenous ABA on yield and key enzyme activities of nitrogen metabolism of soybean under drought stress. Chin Agric Bull, 2017,33(34):26-31 (in Chinese with English abstract).
[30] Oliveira H C, Freschi L, Sodek L . Nitrogen metabolism and translocation in soybean plants subjected to root oxygen deficiency. Plant Physiol Biochem, 2013,66:141-149.
doi: 10.1016/j.plaphy.2013.02.015 pmid: 23500717
[31] 张志良 . 植物生理学实验指导(第5版). 北京: 高等教育出版社. 2016. pp 127-159.
Zhang Z L. Experimental Guidance on Plant Physiology, 5th edn. Beijing: Higher Education Publishers, 2016. pp 127-159(in Chinese).
[32] Chopra J, Kaur N, Gupta A K . Ontogenic changes in enzymes of carbon metabolism in relation to carbohydrate status in developing mungbean reproductive structures. Phytochemistry, 2000,53:539-548.
doi: 10.1016/s0031-9422(99)00545-2 pmid: 10724178
[33] Tsai C Y, Salamini F, Nelson O E . Enzymes of carbohydrate metabolism in the developing endosperm of maize. Plant Physiol, 1970,46:299-306.
doi: 10.1104/pp.46.2.299 pmid: 16657454
[34] Nishiyama Y, Murata N . Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotechnol, 2014,98:8777-8796.
doi: 10.1007/s00253-014-6020-0 pmid: 25139449
[35] 李瑞姣, 陈献志, 岳春雷, 李贺鹏, 王珺, 郭亮, 杨乐 . 干旱胁迫对日本荚蒾幼苗光合生理特性的影响. 生态学报, 2018,38:2041-2047.
Li R J, Chen X Z, Yue C L, Li H P, Wang J, Guo L, Yang L . Effects of drought stress on the photosynthetic characteristics of Viburnum japonicum seedlings. Acta Ecol Sin, 2018,38:2041-2047 (in Chinese with English abstract).
[36] Bonnefont-Rousselot D, Collin F, Jore D, Gardès-Albert M . Reaction mechanism of melatonin oxidation by reactive oxygen species in vitro. J Pineal Res, 2011,50:328-335.
doi: 10.1111/j.1600-079X.2010.00847.x pmid: 21244479
[37] Davey M W, Montagu M V, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, Benzie I J J, Strain J J, Favell D, Fletcher J . Plant l-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric, 2000,80:825-860.
[38] Anjum S A, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, Zohaib A, Abbas F, Saleem M F, Ali I, Wang L C . Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci, 2017,8:69.
doi: 10.3389/fpls.2017.00069 pmid: 28220130
[39] 王福祥, 肖开转, 姜身飞, 曲梦宇, 连玲, 何炜, 陈丽萍, 谢华安, 张建福 . 干旱胁迫下植物体内活性氧的作用机制. 科学通报, 2019,64:1765-1779.
Wang F X, Xiao K Z, Jiang S F, Qu M Y, Lian L, He W, Chen L P, Xie H A, Zhang J F . Mechanisms of reactive oxygen species in plants under drought stress. Chin Sci Bull, 2019,64:1765-1779 (in Chinese with English abstract).
[40] Sharma P, Jha A B, Dubey R S, Pessarakli M . Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot, 2012,10:1-26.
doi: 10.1016/j.plaphy.2016.05.038 pmid: 27269705
[41] Liu J, Wang W, Wang L, Sun Y . Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regul, 2015,77:317-326.
doi: 10.1007/s10725-015-0066-6
[42] López-Burillo S, Tan D X, Rodriguez-Gallego V, Manchester L C, Mayo J C, Sainz R M, Reiter R J . Melatonin and its derivatives cyclic 3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine and 6-methoxymelatonin reduce oxidative DNA damage induced by Fenton reagents. J Pineal Res, 2003,34:178-184.
[43] 李建明, 潘铜华, 王玲慧, 杜清洁, 常毅博, 张大龙, 刘媛 . 水肥耦合对番茄光合、产量及水分利用效率的影响. 农业工程学报, 2014,30(10):82-90.
Li J M, Pan T H, Wang L H, Du Q J, Chang Y B, Zhang D L, Liu Y . Effects of water-fertilizer coupling on tomato photosynthesis, yield and water use efficiency. Trans CSAE, 2014,30(10):82-90 (in Chinese with English abstract).
[44] Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S M A . Plant drought stress: effects, mechanisms and management. Agron Sustain Dev, 2009,29:153-188.
[45] 邢兴华 . α-萘乙酸缓解大豆花期逐渐干旱胁迫的生理机制. 南京农业大学博士学位论文, 江苏南京, 2014.
Xing X H . The Physiological Mechanism of α-naphthylacetic Acid to Alleviate the Gradual Drought Stress in Soybean Flowering Stage. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu,China, 2014 (in Chinese with English abstract).
[46] Ye J, Wang S, Deng X, Yin L, Xiong B, Wang X . Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiol Plant, 2016,38:48.
doi: 10.1007/s11738-015-2045-y
[47] Wei W, Li Q T, Chu Y N, Reiter R J, Yu X M, Zhu D H, Zhang W K, Ma B, Lin Q, Zhang J S, Chen S Y . Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot, 2014,66:695-707.
doi: 10.1093/jxb/eru392 pmid: 25297548
[48] 张兴华, 高杰, 杜伟莉, 张仁和, 薛吉全 . 干旱胁迫对玉米品种苗期叶片光合特性的影响. 作物学报, 2015,41:154-159.
Zhang X H, Gao J, Du W L, Zhang R H, Xue J Q . Effects of drought stress on photosynthetic characteristics of maize hybrids at seedling stage. Acta Agron Sin, 2015,41:154-159 (in Chinese with English abstract).
[49] 邢兴华, 徐泽俊, 齐玉军, 王晓军, 孙东雷, 卞能飞, 王幸 . 外源α-萘乙酸对花期干旱大豆碳代谢的影响. 应用生态学报, 2018,29:1215-1224.
Xing X H, Xu Z J, Qi Y J, Wang X J, Sun D L, Bian N F, Wang X . Effect of exogenous α-naphthaleneacetic acid on carbon metabolism of soybean under drought stress at flowering stage. Chin J Appl Ecol, 2018,29:1215-1224 (in Chinese with English abstract).
[50] Commichau F M, Forchhammer K, Stülke J . Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol, 2006,9:167-172.
doi: 10.1016/j.mib.2006.01.001 pmid: 16458044
[51] 任胜茂, 邓榆川, 文凤君, 刘明洁, 袁小琴, Sajad H, 蒲全明, 刘卫国, 杨文钰 . 套作对大豆苗期碳氮物质代谢的影响及其与抗倒伏性的关系. 草业学报, 2018,27(9):85-94.
Ren S M, Deng Y C, Wen F J, Liu M J, Yuan X Q, Sajad H, Pu Q M, Liu W G, Yang W Y . Effects of intercropping on the metabolism of carbon and nitrogen of soybean at the seedling stage and its relationship with lodging. Acta Pratac Sin, 2018,27(9):85-94 (in Chinese with English abstract).
[52] 黄琳琳 . 干旱胁迫和不同氮素水平对苹果根系氮素吸收和代谢的影响研究. 西北农林科技大学博士学位论文,陕西杨凌, 2018.
Huang L L . Effects of Drought Stress and Different Nitrogen Levels on Nitrogen Uptake and Metabolism in Apple Roots. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi,China, 2018 (in Chinese with English abstract).
[53] Zhang J, Shi Y, Zhang X, Du H, Xu B, Huang B . Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ Exp Bot, 2017,138:36-45.
doi: 10.1016/j.envexpbot.2017.02.012
[1] 周宝元, 葛均筑, 侯海鹏, 孙雪芳, 丁在松, 李从锋, 马玮, 赵明. 黄淮海平原南部不同种植体系周年气候资源分配与利用特征研究[J]. 作物学报, 2020, 46(6): 937-949.
[2] 张玉芹, 杨恒山, 李从锋, 赵明, 罗方, 张瑞富. 条带耕作错位种植对灌区春玉米产量形成与冠根特征的影响[J]. 作物学报, 2020, 46(6): 902-913.
[3] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[4] 周磊,刘秋员,田晋钰,朱梦华,程爽,车阳,王志杰,邢志鹏,胡雅杰,刘国栋,魏海燕,张洪程. 甬优系列籼粳杂交稻产量及氮素吸收利用的差异[J]. 作物学报, 2020, 46(5): 772-786.
[5] 丁永刚,李福建,王亚华,汤小庆,杜同庆,朱敏,李春燕,朱新开,丁锦峰,郭文善. 稻茬小麦氮高效品种产量构成和群体质量特征[J]. 作物学报, 2020, 46(4): 544-556.
[6] 卫平洋,裘实,唐健,肖丹丹,朱盈,刘国栋,邢志鹏,胡雅杰,郭保卫,高尚勤,魏海燕,张洪程. 安徽沿淮地区优质高产常规粳稻品种筛选及特征特性[J]. 作物学报, 2020, 46(4): 571-585.
[7] 罗俊,林兆里,李诗燕,阙友雄,张才芳,杨仔奇,姚坤存,冯景芳,陈建峰,张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响[J]. 作物学报, 2020, 46(4): 596-613.
[8] 金容,李钟,杨云,周芳,杜伦静,李小龙,孔凡磊,袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响[J]. 作物学报, 2020, 46(4): 614-630.
[9] 刘永晨,司成成,柳洪鹃,张彬彬,史春余. 改善土壤通气性促进甘薯源库间光合产物运转的原因解析[J]. 作物学报, 2020, 46(3): 462-471.
[10] 叶夕苗,程鑫,安聪聪,袁剑龙,余斌,文国宏,李高峰,程李香,王玉萍,张峰. 马铃薯产量组分的基因型与环境互作及稳定性[J]. 作物学报, 2020, 46(3): 354-364.
[11] 郑飞娜,初金鹏,张秀,费立伟,代兴龙,贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应[J]. 作物学报, 2020, 46(3): 423-431.
[12] 王士红,杨中旭,史加亮,李海涛,宋宪亮,孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响[J]. 作物学报, 2020, 46(3): 395-407.
[13] 解松峰,吉万全,张耀元,张俊杰,胡卫国,李俊,王长有,张宏,陈春环. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3): 365-384.
[14] 刘代铃,谢俊锋,何乾瑞,陈四维,胡跃,周佳,佘跃辉,刘卫国,杨文钰,武晓玲. 净作和套作下大豆贮藏蛋白11S、7S组分相对含量的QTL分析[J]. 作物学报, 2020, 46(3): 341-353.
[15] 杨志远,李娜,马鹏,严田蓉,何艳,蒋明金,吕腾飞,李郁,郭翔,胡蓉,郭长春,孙永健,马均. 水肥“三匀”技术对水稻水、氮利用效率的影响[J]. 作物学报, 2020, 46(3): 408-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清;李阳生;吴福顺;廖江林;李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[5] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[6] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[7] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[8] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[9] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[10] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .