欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (5): 778-785.doi: 10.3724/SP.J.1006.2009.00778

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

应用SSR分子标记分析国外种质对我国小麦品种的遗传贡献

李小军,徐鑫,刘伟华,李秀全,杨欣明,李立会*   

  1. 国家农作物基因资源与基因改良重大科学工程/中国农业科学院作物科学研究所,北京100081
  • 收稿日期:2008-12-30 修回日期:2009-02-17 出版日期:2009-05-12 网络出版日期:2009-03-20
  • 通讯作者: 李立会,电话:010-62186670
  • 基金资助:

    本研究由国家重点基础发展研究计划(973计划)项目(2006CB101701)资助.

Genetic Contribution of Introduced Varieties to Wheat Breeding in China Using SSR Markers

LI Xiao-Jun,XU Xin,LIU Wei-Hua,Li Xiu-Quan,YANG Xin-Ming,LI Li-Hui*   

  1. National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science,Chinese Academy of Agricultural Sciences, Beijing 100081,China
  • Received:2008-12-30 Revised:2009-02-17 Published:2009-05-12 Published online:2009-03-20
  • Contact: LI Li-Hui,Tel:010-62186670

摘要:

利用363SSR标记分析了在我国小麦生产和育种中发挥了重要作用的11份国外引进品种和33份选育品种的遗传组成,旨在揭示国外种质对我国小麦品种改良的遗传贡献,指导种质资源引进和利用。国外种质包含了选育品种所发现等位变异的76.3%。与不同时期小麦品种等位基因多样性比较发现,国外种质的平均等位变异数最多(3.92)20世纪60年代(2.86)70年代(3.01)基本一致,80年代有所升高(3.46)。品种间遗传距离比较与品种等位基因多样性结果相吻合。比较引进和选育品种在SSR位点的等位变异频率变化,发现至少在33SSR位点,国外种质等位变异在我国小麦育种中被优先选择(该等位变异在引进和选育品种的分布频率均高于70%),其中一些位点已知与产量、生育期和抗病等性状密切相关。表明引进品种在以上基因组区域对我国小麦品种具有非常高的遗传贡献。

关键词: 小麦, 引进品种, 选育品种, SSR标记, 选择, 贡献

Abstract:

Foreign germplasm has exerted important influence on wheat (Triticum aestivum L.) breeding in China. To uncover the genetic contribution of introduced varieties to Chinese wheat breeding, 44 representative accessions, consisting of 11 introduced important parents from 1950s to 1970s and 33 representative domestic varieties which were released in different years in China, were evaluated using 363 SSR markers distributing on 21 chromosomes. The 11 introduced accessions contained 76.3% of the alleles presented in total 33 Chinese accessions. Comparing the pattern of variability among introduced accessions and the groups of varieties released over time, we found that the mean number of alleles amplified was the highest in foreign germplasm (3.92), similar to each other between 1960s and 1970s (2.86 and 3.01, respectively), and that in 1980s was a little higher (3.46). The result on genetic distance among different groups was accorded with the pattern of the allelic diversity. On the other hand, comparing the allelic frequencies between introduced and improved accessions at each SSR locus we found that certain chromosomal regions underwent strong selection in wheat breeding. At least 33 SSR loci on 14 chromosomes with the exception of 4A, 6A, 7A, 1B, 3B, 3D, and 5D, the alleles amplified in foreign accessions were selected preferentially and transmitted to Chinese accessions, whose frequencies were over 70% in either group of accessions. Furthermore, some of the markers were correlated with known wheat genes controlling important traits reported in literatures, including resistance to pests such as strip rust, leaf rust and powdery mildew, and other characters such as yield, growth stage and dormancy. In conclusion, the chromosomal regions selected preferentially play an important role in the improvement of wheat in China, which should be studied further.

Key words: Wheat, Introduced varieties, Improved varieties, SSR marker, Selection, Contribution

[1]Zhuang Q-S(庄巧生). Chinese Wheat Improvement and Pedigree Analysis (中国小麦品种改良及系谱分析). Beijing: China Agriculture Press, 2003(in Chinese)
[2]Qin J(秦君), Chen W-Y(陈维元), Guan R-X(关荣霞), Jiang C-X(姜成喜), Li Y-H(李英惠), Fu Y-S(付亚书), Liu Z-X(刘章雄), Zhang M-C(张孟臣), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). Genetic contribution of foreign germplasm to elite Chinese soybean (Glycine max) cultivars revealed by SSR markers. Chin Sci Bull (科学通报), 2006, 51(6): 681–692 (in Chinese)
[3]Su J, Xiao Y, Li M, Liu Q, Li B, Tong Y, Jia J, Li Z. Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage. Plant Soil, 2006, 281: 25–36
[4]Ma Z, Zhao D, Zhang C, Zhang Z, Xue S, Lin F, Kong Z, Tian D, Luo Q. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Gen Genomics, 2007, 277: 31–42
[5]Saghai Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018
[6]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114
[7]Rohlf F J. NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System, Version 2.10. Exeter Software, New York, 2002
[8]Jakobson I, Peusha H, Timofejeva L, J?rve K. Adult plant and seedling resistance to powdery mildew in a Triticum aestivum × Triticum militinae hybrid line. Theor Appl Genet, 2006, 112: 760–769
[9]Huang X Q, C?ster H, Ganal M W, R?der M S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 106: 1379–1389
[10]Eriksen L, Borum F, Jahoor A. Inheritance and localisation of resistance to Mycosphaerella graminicola causing septoria tritici blotch and plant height in the wheat (Triticum aestivum L.) genome with DNA markers. Theor Appl Genet, 2003, 107: 515–527
[11]Gervais L, Dedryver F, Morlais J Y, Bodusseau V, Negre S, Bilous M, Groos C, Trottet M. Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet, 2003, 106: 961–970
[12]Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165–1177
[13]Chu C G, Xu S S, Friesen T L, Faris J D. Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breed, 2008, 22: 251–266
[14]Buerstmayr H, Steiner B, Hartl L, Griesser M, Angerer N, Lengauer D, Miedaner T, Schneider B, Lemmens M. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor Appl Genet, 2003, 107: 503–508
[15]Ramburan V P, Pretorius Z A, Louw J H, Boyd L A, Smith P H, Boshoff W H P, Prins R. A genetic analysis of adult plant resistance to stripe rust in the wheat cultivar Kariega. Theor Appl Genet, 2004, 108: 1426–1433
[16]Zhang N(张娜), Yang W-X(杨文香), Li Y-N(李亚宁), Zhang T(张汀), Liu D-Q(刘大群). Developing molecular markers for leaf rust resistance gene Lr45 in wheat based on SSR. Acta Agron Sin (作物学报), 2007, 33(4): 657–662 (in Chinese with English abstract)
[17]Mori M, Uchino N, Chono M, Kato K, Miura H. Mapping QTLs for grain dormancy on wheat chromosome 3A and the group 4 chromosomes, and their combined effect. Theor Appl Genet, 2005, 110: 1315–1323
[18]Gonzalez-Hernandez J L, Elias E M, Kianian S F. Mapping genes for grain protein concentration and grain yield on chromosome 5B of Triticum turgidum (L.) var. dicoccoides. Euphytica, 2004, 139: 217–225
[19]McCartney C A, Somers D J, Humphreys D G, Lukow O, Ames N, Noll J, Cloutier S, McCallum B D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome, 2005, 48: 870–883
[20]Narasimhamoorthy B, Gill B S, Fritz A K, Nelson J C, Brown-Guedira G L. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet, 2006, 112: 787–796
[21]Tian Q Z, Zhou R H, Jia J Z. Genetic diversity trend of common wheat (Triticum turgidum L.) in China revealved with AFLP markers. Genet Resour Crop Evol, 2005, 52: 325–331
[22]Russell J R, Ellis R P, Thomas W T B, Waugh R, Provan J, Booth A, Fuller J, Lawrence P, Young G, Powell W. A retrospective analysis of spring barley germplasm development from ‘foundation genotypes’ to currently successful cultivars. Mol Breed, 2000, 6: 553–568
[23]Reif J C, Hamrit S, Heckenberger M, Schipprack W, Maurer H P, Bohn M, Melchinger A E. Trends in genetic diversity among European maize cultivars and their parental components during the past 50 years. Theor Appl Genet, 2005, 111: 838–845
[24]Gai J-Y(盖钧镒), Zhao T-J(赵团结), Cui Z-L(崔章林), Qiu J-X(邱家驯). Nuclear and cytoplasmic contributions of germplasm from distinct areas to the soybean cultivars released during 1923–1995 in China. Sci Agric Sin (中国农业科学), 1998, 31(5): 35–43 (in Chinese with English abstract)
[25]Gizlice Z, Carter T E, Burton J. Genetic base for North American public soybean cultivars released between 1947 and 1988. Crop Sci, 1994, 34: 1143–1151
[26]Lorenzen L L, Boutin S, Young N, Specht J E, Shoemaker R C. Soybean pedigree analysis using map-based molecular markers: I. tracking RFLP markers in cultivars. Crop Sci, 1995, 35: 1326–1336
[27]Christopher M, Mace E, Jordan D, Rodgers D, McGowan P, Delacy I, Banks P, Sheppard J, Butler D, Poulsen D. Applications of pedigree-based genome mapping in wheat and barley breeding programs. Euphytica, 2007, 154: 307–316
[28]Korzun V, R?der M S, Ganal M W, Worland A J, Law C N. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet, 1998, 96: 1104–1109
[29]Flint-Garcia S A, Thuillet A, Yu J, Pressoir G, Romero S M, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler E S. Maize association population: A high-resolution platform for quantitative trait locus dissection. Plant J, 2005, 44: 1054–1064
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 李振华, 王显亚, 刘一灵, 赵杰宏. NtPHYB1与光温信号互作调控烟草种子萌发[J]. 作物学报, 2022, 48(1): 99-107.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!