欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (02): 245-259.doi: 10.3724/SP.J.1006.2018.00245

• • 上一篇    下一篇

水稻穗上不同粒位籽粒胚乳结构及其结实期灌溉方式对它的调控作用

袁莉民, 展明飞, 章星传, 王志琴, 杨建昌*()   

  1. 扬州大学农学院 / 江苏省作物遗传生理国家重点实验室培育点 / 江苏省粮食作物现代产业技术协同创新中心, 江苏扬州225009;
  • 收稿日期:2017-08-15 接受日期:2017-11-21 出版日期:2018-02-12 网络出版日期:2017-12-20
  • 通讯作者: 杨建昌
  • 作者简介:

    lmyuan@yzu.edu.cn

  • 基金资助:
    本研究由国家自然科学基金项目(31471438, 31461143015), 国家科技支撑计划项目(2014AA10A605), 国家重点研发计划项目(2016YFD0300206-4), 江苏高校优势学科建设工程项目(PAPD)和扬州大学高端人才支持计划项目(2015-1)资助

Endosperm Structure of Grains at Different Positions of Rice Panicle and Regulation Effect of Irrigation Regimes on It during Grain Filling

Li-Min YUAN, Ming-Fei ZHAN, Xing-Chuan ZHANG, Zhi-Qin WANG, Jian-Chang YANG*()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China;
  • Received:2017-08-15 Accepted:2017-11-21 Published:2018-02-12 Published online:2017-12-20
  • Contact: Jian-Chang YANG
  • Supported by:
    This study was supported by the grants from the National Natural Science Foundation of China (31471438, 31461143015), the National Key Technology Support Program of China (2014AA10A605), the National Key Research and Development Support Program of China (2016YFD0300206-4), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Top Talent Supporting program of Yangzhou University (2015-01).

摘要:

为探明水稻穗上不同粒位胚乳结构形成特征及结实期灌溉方式对它的调控作用, 本研究以籼稻扬稻6号和粳稻武运粳24为材料, 运用扫描电镜观察了穗上不同部位籽粒胚乳结构的形成动态。自抽穗至成熟设置保持浅水层(CK)、轻干-湿交替灌溉(WMD)和重干-湿交替灌溉(WSD) 3种灌溉方式, 观察了干湿交替灌溉方式对水稻产量和籽粒胚乳结构的影响。结果表明, 灌浆过程中稻米胚乳结构的形态建成顺序是, 上部穗籽粒早于中部穗籽粒更早于下部穗籽粒, 一次枝梗籽粒早于二次枝梗籽粒, 穗上早开花的籽粒早于迟开花的籽粒。与CK相比, 结实期WMD可以明显提高水稻产量; 其穗下部籽粒胚乳的淀粉体排列更紧密, 籽粒背部淀粉粒嵌挤甚至粘连。在WSD下, 稻米胚乳淀粉体排列疏松, 体积减小, 粒径差异增大, 相互间隙增大。灌溉方式对胚乳结构的影响, 因粒位而异, 以下部穗二次枝梗籽粒的腹部最为显著。表明水稻穗上不同部位籽粒胚乳结构形成与花后天数有密切关系; 结实期WMD可以改进穗下部籽粒胚乳结构, WSD则会使胚乳结构变差。灌浆期土壤水势-20 kPa 可作为改善稻米胚乳淀粉结构的节水灌溉低限指标。

关键词: 水稻, 粒位, 胚乳结构, 淀粉粒, 灌溉方式

Abstract:

In this study, an indica cultivar Yangdao 6 and a japonica cultivar Wuyunjing 24 were used to observe the changes in endosperm structure of grains at different positions of panicle with scanning electron microscope. Three irrigation treatments, namely shallow water layer (CK), alternate wetting and moderate drying (WMD), and alternate wetting and severe drying (WSD), were designed to investigate the effect of irrigation regimes on grain yield and grain endosperm structure. The endosperm structure formation in grains was earlier at the upper part of panicle than at the mid part of panicle, and earlier than at the lower part of panicle; the formation was earlier on a primary branch than on a secondary branch, and earlier in superior grains than in inferior grains. Compared with CK, WMD significantly increased grain yield. The starch granule in endosperm of grains at the lower part of panicle showed more compact arrangement, and that in the back part of grains was more crowded and even more adhered each other under WMD than under CK. Under WSD, the endosperm structure in grains showed that the starch granule arrangement was looser, the granule volume was decreased, and the differences in granule size and the gap between granules were increased, relative to those under CK. The effect of irrigation regimes on endosperm structure varied with grain positions, which was the most significant on the belly of grains at the secondary branch located at the lower part of panicle. The results suggest that the formation of endosperm structure in the grains at different parts of panicle is closely related to days after anthesis. WMD may improve, whereas WSD deteriorate, the endosperm structure of grains at the lower part of rice panicle. Soil water potential -20 kPa can be used as the low limit of soil water potential index in the water-saving irrigation for improving endosperm structure in grains during the grain filling period of rice.

Key words: rice, grain position, endosperm structure, starch granule, irrigation regimes

图1

水稻穗结构模式图"

图版I

花后5~10 d穗上不同部位籽粒胚乳结构图1: 扬稻6号穗上部一次枝梗第1粒花后5 d背部; 图2: 扬稻6号穗下部一次枝梗第1粒花后5 d胚乳; 图3: 扬稻6号穗下部一次枝梗第2粒花后5 d胚乳; 图4: 武运粳24穗上部一次枝梗第1粒花后5 d胚乳; 图5: 武运粳24穗上部一次枝梗第5粒花后5 d胚乳; 图6: 扬稻6号穗上部一次枝梗第2粒花后10 d背部; 图7: 扬稻6号穗上部一次枝梗第6粒花后10 d腹部; 图8: 扬稻6号穗中部一次枝梗第2粒花后10 d背部。"

图版II

花后10 d穗上不同部位籽粒胚乳结构图1: 扬稻6号穗中部一次枝梗第5粒花后10 d背部; 图2: 扬稻6号穗下部一次枝梗第4粒花后10 d背部; 图3: 武运粳24穗上部一次枝梗第1粒花后10 d背部; 图4: 武运粳24穗上部一次枝梗第3粒花后10 d背部, 图5: 武运粳24穗中部一次枝梗第2粒花后10 d胚乳; 图6: 武运粳24穗中部一次枝梗第6粒花后10 d心部; 图7: 武运粳24穗下部二次枝梗第1粒花后10 d背部; 图8: 武运粳24穗下部二次枝梗第4粒花后10 d背部。"

图版III

花后15 d穗上不同部位籽粒胚乳结构图1: 扬稻6号穗上部一次枝梗第1粒花后15 d背部; 图2: 扬稻6号穗上部一次枝梗第5粒花后15 d心部; 图3: 扬稻6号穗上部二次枝梗第2粒花后15 d背部; 图4: 扬稻6号穗下部一次枝梗第1粒花后15 d腹部; 图5: 武运粳24穗上部一次枝梗第5粒花后15 d心部; 图6: 图5籽粒腹部扁平细胞内胚乳; 图7: 武运粳24穗上部二次枝梗第2粒花后15 d胚乳; 图8: 武运粳24穗下部二次枝梗第2粒花后15 d胚乳。"

图版IV

花后20 d穗上不同部位籽粒胚乳结构图1: 扬稻6号穗上部一次枝梗第5粒花后20 d背部; 图2: 扬稻6号穗中部二次枝梗第1粒花后20 d背部; 图3: 扬稻6号穗中部二次枝梗第1粒花后20 d腹部; 图4: 扬稻6号穗下部二次枝梗第1粒花后20 d背部; 图5: 武运粳24穗上部一次枝梗第1粒花后20 d背部; 图6: 武运粳24穗上部一次枝梗第1粒花后20 d心部; 图7: 武运粳24穗中部一次枝梗第6粒花后20 d腹部; 图8: 武运粳24穗下部一次枝梗第4粒花后20 d腹部。"

图版V

花后25 d穗上不同部位籽粒胚乳结构图1: 扬稻6号穗上部一次枝梗第1粒花后25 d腹部; 图2: 扬稻6号穗中部二次枝梗第2粒花后25 d背部; 图3: 扬稻6号穗中部二次枝梗第4粒花后25 d心部; 图4: 扬稻6号穗下部二次枝梗第2粒花后25 d胚乳; 图5: 武运粳24穗上部一次枝梗第7粒花后25 d心部; 图6: 武运粳24穗上部一次枝梗第7粒花后25 d背部; 图7: 武运粳24穗上部一次枝梗第7粒花后25 d腹部; 图8: 武运粳24穗中部一次枝梗第4粒花后25 d腹部。"

图版VI

成熟期穗上不同部位籽粒胚乳结构图1: 扬稻6号穗中部一次枝梗第1粒成熟期背部; 图2: 扬稻6号穗中部二次枝梗第2粒成熟期背部; 图3: 扬稻6号穗中部二次枝梗第3粒成熟期腹部; 图4: 扬稻6号穗下部二次枝梗第3粒成熟期心部; 图5: 武运粳24穗上部一次枝梗第2粒成熟期心部; 图6: 武运粳24穗中部一次枝梗第2粒成熟期腹部; 图7: 武运粳24穗中部一次枝梗第5粒成熟期腹部; 图8: 武运粳24穗下部二次枝梗第2粒成熟期腹部。"

表1

结实期干湿交替灌溉对水稻产量及其构成的影响"

试验/品种
Exp./cultivar
处理
Treatment
穗数
Panicles per m2
每穗粒数
Spikelets per panicle
结实率
Seed-setting rate
(%)
千粒重
1000-grain weight (g)
产量
Yield
(g m-2)
土培池试验 Tank exp.
扬稻6号
Yangdao 6
CK 280.4 a 150.2 a 84.6 b 26.5 b 957.7 b
T1 282.6 a 148.9 a 90.2 a 27.7 a 1051.4 a
T2 279.3 a 152.1 a 78.6 c 26.1 b 871.5 c
武运粳24
Wuyunjing 24
CK 271.3 a 167.5 a 82.6 b 27.0 b 986.5 b
T1 273.5 a 168.9 a 87.5 a 27.6 a 1035.2 a
T2 270.8 a 165.3 a 75.6 c 26.3 c 870.4 c
大田试验 Field exp.
扬稻6号
Yangdao 6
CK 257.5 a 156.4 a 82.5 b 26.3 b 873.8 b
T1 255.3 a 157.9 a 89.6 a 27.5 a 993.4 a
T2 256.6 a 158.2 a 77.3 c 26.1 b 818.9 c
武运粳24
Wuyunjing 24
CK 264.5 a 169.3 a 83.7 a 27.1 b 985.6 b
T1 265.3 a 170.5 a 88.4 b 27.8 a 1110.2 a
T2 263.6 a 168.4 a 77.5 c 26.4 c 908.1 c

图版VII

结实期干湿交替灌溉对籼稻扬稻6号稻米胚乳结构的影响图1: 对照组基部一次枝梗籽粒腹部; 图2: T1处理组基部一次枝梗籽粒腹部; 图3: T2处理组基部一次枝梗籽粒腹部; 图4: 对照组基部二次枝梗籽粒腹部; 图5: T1处理组基部二次枝梗籽粒腹部; 图6: T2处理组基部二次枝梗籽粒腹部; 图7: 对照组顶部二次枝梗籽粒背部; 图8: T2处理组顶部二次枝梗籽粒背部。"

图版VIII

结实期干湿交替灌溉对粳稻武运粳24稻米胚乳结构的影响图1: 对照组基部一次枝梗籽粒背部; 图2: T1处理组基部一次枝梗籽粒背部; 图3: T2处理组基部一次枝梗籽粒背部; 图4: 对照组基部一次枝梗籽粒腹部; 图5: T1处理组基部一次枝梗籽粒腹部; 图6: T2处理组基部一次枝梗籽粒腹部; 图7: 对照组基部二次枝梗籽粒背部; 图8: T2处理组基部二次枝梗籽粒背部。"

[1] 郭二男, 潘增, 王才林, 卢少华. 粳稻腹白米的研究. 作物学报, 1983, 9: 31-38
Guo E N, Pan Z, Wang C L, Lu S H.Studies on white belly grain ofjaponica rice. Acta Agron Sin, 1983, 9: 31-38 (in Chinese with English abstract)
[2] 杨建昌, 刘立军, 王志琴, 郎有忠, 朱庆森. 稻穗颖花开花时间对胚乳发育的影响及其生理机制. 中国农业科学, 1999, 32(3): 44-51
Yang J C, Liu L J, Wang Z Q, Lang Y Z, Zhu Q S.Effects of flowering time of spikelets on endosperm development in rice and its physiological mechanism.Sci Agric Sin, 1999, 32(3): 44-51 (in Chinese with English abstract)
[3] 杨建昌, 苏宝林, 王志琴, 郎有忠, 朱庆森. 亚种间杂交稻籽粒灌浆特性及其生理的研究. 中国农业科学, 1998, 31(1): 7-14
Yang J C, Shu B L, Wang Z Q, Lang Y Z, Zhu Q S.Characteristics and physiology of grain-filling in intersubspecific hybrid rice.Sci Agric Sin, 1998, 31(1): 7-14 (in Chinese with English abstract)
[4] 朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988, 14: 182-192
Zhu Q S, Cao X Z, Luo Y Q.Growth analysis on the process of grain filling in rice.Acta Agron Sin, 1988, 14: 182-192 (in Chinese with English abstract)
[5] 伍时照, 黄超武, 欧烈才, 孔宪扬, 鄢鸿鸣, 林瑜钊. 水稻籼型品种胚乳淀粉粒性状的扫描电镜观察. 植物学报, 1986, 28: 145-149
Wu S Z, Huang C W, Ou L C, Kong X Y, Yan H M, Lin Y Z.Observation on endosperm of riceindica variety with scanning electron microscopy. Acta Bot Sin, 1986, 28: 145-149 (in Chinese with English abstract)
[6] 范燕萍, 唐启源, 周美兰. 稻米胚乳淀粉细胞结构与米质关系的研究: I. 胚乳淀粉细胞结构差异及其对米质垩白性状的影响. 作物研究, 1988, 2(1): 18-23
Fan Y P, Tang Q Y, Zhou M L.Study on the structure of rice endosperm starch cell and its relationship with rice quality: I. The structural difference of endosperm starch cells and their effect on the chalky characters of rice.Crop Res, 1988, 2(1): 18-23 (in Chinese)
[7] 袁莉民, 朱庆森, 王志琴, 张组建. 亚种间杂交稻及其亲本胚乳结构的扫描电镜观察. 江苏农学院学报, 1994, 15(02): 45-50
Yuan L M, Zhu Q S, Wang Z Q, Zhang Z J.Preliminary observation on the properties of starch granules in endosperm of hybrid rice between subspecies and their parents.J Jiangsu Agric Coll, 1994, 15(02): 45-50 (in Chinese with English abstract)
[8] 季清娥, 郑恒清, 徐珍秀, 兰盛银. 品质不同的稻米胚乳淀粉粒的微观结构观察. 福建农业大学学报, 1998, 27: 241-244
Ji Q E, Zheng H Q, Xu Z X, Lan S Y.Observation on the microstructure of endosperm starch granule of rice with different qualifies.J Fujian Agric Univ, 1998, 27: 241-244 (in Chinese with English abstract)
[9] 王忠, 李卫芳, 顾蕴洁, 陈刚, 石火英, 高煜珠. 水稻胚乳的发育及其养分输入的途径. 作物学报, 1995, 21: 520-531
Wang Z, Li W F, Gu Y J, Chen G, Shi H Y, Gao Y Z.Development of rice endosperm and the pathway of nutrients entering the endosperm.Acta Agron Sin, 1995, 21: 520-531 (in Chinese with English abstract)
[10] Lampayan R M, Rejesus R M, Singleton G R, Bouman B A M. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice.Field Crops Res, 2015, 170: 95-108
[11] Ye Y S, Liang X Q, Chen Y X, Liu J, Gu J T, Guo R, Li L.Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use.Field Crops Res, 2013, 144: 212-224
[12] Arjun P, Van T M, Duong Q V, Thi P L B, Thi L A M, Lars S J, Andreas D N. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam.Agric, Ecosys Environ, 2014, 196: 137-146.
[13] Liu L J, Chen T T, Wang Z Q, Zhang H, Yang J C, Zhang J H.Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice.Field Crops Res, 2013, 154: 226-235
[14] Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H.An alternate wetting and moderate soil drying regime improves root and shoot growth in rice.Crop Sci, 2009, 49: 2246-2260
[15] Yang J C, Zhang J H.Crop management techniques to enhance harvest index in rice.J Exp Bot, 2010, 61: 3177-3189
[16] Tabbal D F, Boμman B A M, Bhuiyan S I, Sibayan E B, Sattar M A. On-farm strategies for reducing water input in irrigated rice: case studies in the Philippines.Agric Water Manage, 2002, 56: 93-112
[17] 王丰, 程方民. 从籽粒灌浆过程上讨论水稻粒间品质差异形成的生理机制. 种子, 2004, 23(1): 31-35
Wang F, Cheng F M.Physiological mechanism of rice quality development during grain filling stage.Seed, 2004, 23(1): 31-35 (in Chinese)
[18] 程旺大, 王润屹, 李金泉, 沈铭, 徐素琴, 陶国才. 水稻籽粒淀粉积累的穗部粒间差异及其生理机制. 上海交通大学学报(农业科学版), 2003, 21(增刊): 93-98
Cheng W D, Wang R Y, Li J Q, Shen M, Xu S Q, Tao G C.The difference in starch accumulation of grains within a panicle and its physiological mechanisms.J Shanghai Jiaotong Univ (Agric Sci), 2003, 21(suppl): 93-98 (in Chinese with English abstract)
[19] 董明辉, 桑大志, 王朋, 唐成, 杨建昌. 水稻穗上不同部位籽粒碾米品质的差异. 中国农业科学, 2005, 38: 1973-1979
Dong M H, Sang D Z, Wang P, Tang C, Yang J C.Variations in the milling quality of grains at different positions within a rice panicle.Sci Agric Sin, 2005, 38: 1973-1979 (in Chinese with English abstract)
[20] 董明辉, 桑大志, 王朋, 张文杰, 杨建昌. 水稻穗上不同部位籽粒垩白性状的差异. 作物学报, 2006, 32: 103-111
Dong M H, Sang D Z, Wang P, Zhang W J, Yang J C.Difference in chalky characters of the grains at different positions within a rice panicle.Acta Agron Sin, 2006, 32: 103-111 (in Chinese with English abstract)
[21] 赵步洪, 董明辉, 张洪熙, 朱庆森, 杨建昌. 杂交水稻穗上不同粒位籽粒品质性状的差异. 扬州大学学报(农业与生命科学版), 2006, 27(1): 38-42
Zhao B H, Dong M H, Zhang H X, Zhu Q S, Yang J C.Difference in quality characters of the grains at different positions within a hybrid rice panicle.J Yangzhou Univ(Agric Life Sci Edn), 2006, 27(1): 38-42 (in Chinese with English abstract)
[22] 朱庆森, 曹显祖, 顾自奋. 杂交水稻南优3号籽粒发育动态研究. 中国农业科学, 1981, 14(1): 43-50
Zhu Q S, Cao X Z, Gu Z F.Studies on the percentage of ripened grains of hybrid rice.Sci Agric Sin, 1981, 14(1): 43-50 (in Chinese with English abstract)
[23] 张艳霞, 丁艳锋, 李刚华, 王强盛, 黄丕生, 王绍华. 直链淀粉含量不同的稻米淀粉结构、糊化特性研究. 作物学报, 2007, 33: 1021-1025
Zhang Y X, Ding Y F, Li G H, Wang Q S, Huang P S, Wang S H.Starch structure and paste property of rice with different amylose content.Acta Agron Sin, 2007, 33: 1021-1025 (in Chinese with English abstract)
[24] 王忠. 水稻的开花与结实. 北京: 科学出版社, 2015. pp 198-204
Wang Z.Flowering and Seed-setting of Rice. Beijing: Science Press, 2015. pp 198-204 (in Chinese)
[25] 沈波. 早籼稻垩白形成中胚乳淀粉粒发育的电镜观察. 中国水稻科学, 2000, 14: 225-228
Shen B.Observation on the starch grain development in endosperm of early indica rice during chalkiness formation with scanning electronic microscope. Chin J Rice Sci, 2000, 14: 225-228 (in Chinese with English abstract)
[26] 何秀英, 伍时照, 宋美芳, 林贤琛. 水稻籽粒发育和胚乳淀粉粒形成的研究. 广东农业科学, 2000, (02): 8-10
He X Y, Wu S Z, Song M F, Lin X C.Studies on grain development and starch granule formation in the endosperm of rice.Guangdong Agric Sci, 2000, (02): 8-10 (in Chinese)
[27] 韦存虚, 张军, 周卫东, 陈义芳, 刘巧泉. 水稻胚乳淀粉体被膜的降解和复粒淀粉粒概念的探讨. 中国水稻科学, 2008, 22: 377-384
Wei C X, Zhang J, Zhou W D, Chen Y F, Liu Q Q.Degradation of amyloplast envelop and discussion on the concept of compound starch granule in rice endosperm.Chin J Rice Sci, 2008, 22: 377-384 (in Chinese with English abstract)
[28] 李栋梁, 李小刚, 顾蕴洁, 王忠. 不同类型水稻品种胚乳发育的研究. 中国农业科学 2014, 47: 3757-3768
Li D L, Li X G, Gu Y J, Wang Z.Investigation of endosperm cell development of different rice varieties.Sci Agric Sin, 2014, 47: 3757-3768 (in Chinese with English abstract)
[29] 董明辉, 谢裕林, 乔中英, 刘晓斌, 吴翔宙, 赵步洪. 水稻不同粒位籽粒淀粉与蛋白质累计动态差异. 中国水稻科学, 2011, 25: 297-306
Dong M H, Xie Y L, Qiao Z Y, Liu X B, Wu X Z, Zhao B H.Variation in carbohydrate and protein accumulation between spikelets at different positions within a rice panicle during grain filling.Chin J Rice Sci, 2011, 25: 297-306 (in Chinese with English abstract)
[30] 蔡一霞, 朱庆森, 王志琴, 杨建昌, 郑雷, 钱卫成. 结实期土壤水分对稻米品质的影响. 作物学报, 2002, 28: 601-608
Cai Y X, Zhu Q S, Wang Z Q, Yang J C, Zheng L, Qian W C.Effects of soil moisture on rice quality during grain-filling period.Acta Agron Sin, 2002, 28: 601-608 (in Chinese with English abstract)
[31] 刘立军, 李鸿伟, 赵步洪, 王志琴, 杨建昌. 结实期干湿交替处理对稻米品质的影响及其生理机制. 中国水稻科学, 2012, 26: 77-84
Liu L J, Li H W, Zhao B H, Wang Z Q, Yang J C.Effects of alternate drying-wetting irrigation during grain filling on grain quality and its physiological mechanisms in rice.Chin J Rice Sci, 2012, 26: 77-84 (in Chinese with English abstract)
[32] 刘凯, 张耗, 张慎凤, 王志琴, 杨建昌. 结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因. 作物学报, 2008, 34: 268-276
Liu K, Zhang H, Zhang S F, Wang Z Q, Yang J C.Effects of soil moisture and irrigation patterns during grain filling on grain yield and quality of rice and their physiological mechanism.Acta Agron Sin, 2008, 34: 268-276 (in Chinese with English abstract)
[33] 董明辉, 谢裕林, 刘晓斌, 吴翔宙, 赵步洪, 杨建昌. 结实期土壤水势对水稻籽粒品质及其粒间差异的影响. 中国生态农业学报, 2011, 19: 305-311
Dong M H, Xie Y L, Liu X B, Wu X Z, Zhao B H, Yang J C.Effect of soil water potential on grain quality at different spike positions during grain filling in rice.Chin J Eco-Agric, 2011, 19: 305-311 (in Chinese with English abstract)
[34] Zhang H, Chen T T, Wang Z Q, Yang J C, Zhang J H.Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation.J Exp Bot, 2010, 61: 3719-3733
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!