作物学报 ›› 2018, Vol. 44 ›› Issue (11): 1600-1611.doi: 10.3724/SP.J.1006.2018.01600
Yu TIAN,Lei YANG,Ying-Hui LI(),Li-Juan QIU()
摘要:
大豆胞囊线虫(Heterodera glycines Ichinohe)是严重危害世界范围大豆生产的害虫, 采用合理轮作和种植抗病品种可有效控制损失。为了开展分子标记辅助选择以加速抗病品种培育, 本研究针对前期发现的与大豆胞囊线虫3号小种(SCN3)抗性显著关联的非同义变异SNP位点Map-5149, 开发高通量、低成本的新型分子标记—竞争性等位基因特异PCR标记(kompetitive allele specific PCR, KASP), GmSNAP11-5149。利用GmSNAP11-5149鉴定了来自8个国家的202份代表性大豆抗感资源, 发现141份材料携带抗病基因型GmSNAP11-5149-AA, 平均雌虫指数为6.2%, 极显著低于58份携带感病基因型GmSNAP11-5149-GG材料的雌虫指数(61.1%), 方差分析表明, GmSNAP11-5149与胞囊线虫的抗性显著相关(F=44.18, P<0.0001), 对抗病材料的选择效率达到92%, GmSNAP11-5149可作为一个实用的分子标记应用于辅助抗大豆胞囊线虫品种选育和抗病种质资源鉴定。
[1] | Li Y H, Qi X T, Chang R Z, Qiu L J. Evaluation and utilization of soybean germplasm for resistance to cyst nematode in China. In: Sudaric A eds. Soybean-Molecular Aspects of Breeding. InTech, Croatia, 2011. pp 373-396 |
[2] | Niblack T L, Lambert K N, Tylka G L . A model plant pathogen from the kingdom animalia: Heterodera glycines, the soybean cyst nematode. Annu Rev Phytopathol, 2006,44:283-303 |
[3] |
Kim K S, Vuong T D, Qiu D, Robbins R T, Grover S J, Li Z . Advancements in breeding, genetics, and genomics for resistance to three nematode species in soybean. Theor Appl Genet, 2016,129:2295-2311
doi: 10.1007/s00122-016-2816-x |
[4] |
Concibido V C, Diers B W, Arelli P R . A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci, 2004,44:1121-1131
doi: 10.2135/cropsci2004.1121 |
[5] |
Delheimer J C, Niblack T, Schmidt M, Shannon G, Diers B W . Comparison of the effects in field tests of soybean cyst nematode resistance genes from different resistance sources. Crop Sci, 2010,50:2231-2239
doi: 10.2135/cropsci2010.01.0013 |
[6] | Niblack T L, Colgrove A L, Colgrove K, Bond J P . Shift in virulence of soybean cyst nematode is associated with use of resistance from PI 88788. Plant Health Prog, 2008, doi: 10.1094/ PHP-2008-0118-01-RS |
[7] | Mulrooney R P, Gregory N F, Heinz R D . Soybean cyst nematode populations in delaware are shifting in response to widespread planting of soybean cultivars with resistance from PI 88788. J Nematol, 2010,42:259-260 |
[8] | Chen S, Potter B, Orf J . Virulence of the soybean cyst nematode has increased over years in Minnesota. J Nematol, 2010,42:238-238 |
[9] |
Saintenac C, Zhang W, Salcedo A, Rouse M N, Trick H N, Akhunov E . Identification of wheat gene sr35 that confers resistance to ug99 stem rust race group. Science, 2013,341:783-786
doi: 10.1126/science.1239022 pmid: 4748951 |
[10] | Vuong T D, Sleper D A, Shannon J G, Nguyen H T . Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines Ichinohe) in soybean PI 567516C.Theor Appl Genet, 2010,121:1253-1266 |
[11] |
Cook D E, Lee T G, Guo X, Melito S, Wang K, Bayless A M, Wang J, Hughes T J, Willis D K, Clemente T E . Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science, 2012,338:1206-1209
doi: 10.1126/science.1228746 pmid: 23065905 |
[12] | Cook D E, Bayless A M, Wang K, Guo X, Song Q, Jiang J, Bent A F . Distinct copy number, coding sequence, and locus methylation patterns underlie Rhg1 -mediated soybean resistance to soybean cyst nematode. Plant Physiol, 2014,165:630-647 |
[13] |
Liu S M, Kandoth P K, Lakhssassi N, Kang J W, Colantonio V, Heinz R, Yeckel G, Zhou Z, Bekal S, Dapprich J . The soybeanGmSNAP18 gene underlies two types of resistance to soybean cyst nematode. Nat Commun, 2017, doi: 10.1038/ncomms14822
doi: 10.1038/ncomms14822 pmid: 5378975 |
[14] | Liu S M, Kandoth P K, Warren S D, Yeckel G, Heinz R, Alden J, Yang C L, Jamai A, El-Mellouki T, Juvale P S . A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature, 2012,492:256-260 |
[15] | Li Y H, Shi X H, Li H H, Reif J C, Wang J J, Liu Z S, He S, Yu B S, Qiu L J . Dissecting the genetic basis of resistance to soybean cyst nematode combining linkage and association mapping. Plant Genome, 2016, doi: 10.3835/plantgenome2015.3804.0020 |
[16] | Lakhssassi N, Liu S M, Bekal S, Zhou Z, Colantonio V, Lambert K, Barakat A, Meksem K . Characterization of the Soluble NSF Attachment Protein gene family identifies two members involved in additive resistance to a plant pathogen. Sci Rep, 2017, doi: 10.1038/srep45226 |
[17] | 邱丽娟, 常汝镇, 王文辉 , Cregan P, Wang D, Chen Y, 马凤鸣. 大豆抗胞囊线虫病种质rhg_1和Rhg_4位点的单核苷酸多态性(SNPs). 植物遗传资源学报, 2003,4(2):89-93 |
Qiu L J, Chang R Z, Wang W H, Cregan P, Wang D, Chen Y , Ma F M . Single Nucleotide Polymorphism ( SNPs) at both loci of rhg1 and Rhg4 in soybean resistant germplasm. J Plant Genet Resour, 2003,4(2):89-93 (in Chinese with English abstract) | |
[18] |
Shi Z, Liu S M, Noe J, Arelli P, Meksem K, Li Z L . SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. BMC Genomics, 2015,16:314
doi: 10.1186/s12864-015-1531-3 |
[19] |
Kadam S, Vuong T D, Qiu D, Meinhardt C G, Song L, Deshmukh R, Patil G, Wan J, Valliyodan B, Scaboo A M . Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding. Plant Sci, 2016,242:342-350
doi: 10.1016/j.plantsci.2015.08.015 |
[20] | 南海洋, 李英慧, 常汝镇, 邱丽娟 . 基于大豆胞囊线虫病抗性候选基因rhg1的InDel标记开发与鉴定. 作物学报, 2009,35:1236-1243 |
Nan H Y, Li Y H, Chang R Z, Qiu L J . Development and identification of InDel markers based on rhg1 gene for resistance to soybean cyst nematode( Heterodera glycines Ichinohe). Acta Agron Sin, 2009,35:1236-1243 (in Chinese with English abstract) | |
[21] | Cregan P B, Mudge J, Fickus E W, Danesh D, Denny R, Young N D . Two simple sequence repeat markers to select for soybean cyst nematode resistance coditioned by therhg1 locus. Theor Appl Genet, 1999,99:811-818 |
[22] | 史学晖, 李英慧, 于佰双, 郭勇, 王家军, 邱丽娟 . 大豆胞囊线虫主效抗病基因Rhg4(GmSHMT)的CAPS/dCAPS标记开发和利用. 作物学报, 2015,41:1463-1471 |
Shi X H, Li Y H, Yu B S, Guo Y, Wang J J, Qiu L J . Development and utilization of CAPS/dCAPS markers based on the SNPs lying in soybean cyst nematode resistant genes Rhg4. Acta Agron Sin, 2015,41:1463-1471 (in Chinese with English abstract) | |
[23] | Steele K A , Quinton-Tulloch M J, Amgai R B, Dhakal R, Khatiwada S P, Vyas D. Accelerating public sector rice breeding with high-density KASP markers derived from whole genome sequencing of indica rice. Mol Breed, 2018,38:38 |
[24] | Tan C T, Yu H J, Yang Y, Xu X Y, Chen M S, Rudd J C, Xue Q W, Ibrahim AMH, Garza L, Wang S C . Development and validation of KASP markers for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 in wheat. Theor Appl Genet, 2017,130:1867-1884 |
[25] |
Patil G, Chaudhary J, Vuong T D, Jenkins B, Qiu D, Kadam S . Development of SNP genotyping assays for seed composition traits in soybean. Int J Plant Genomics, 2017, doi: org/10.1155/ 2017/6572969
doi: 10.1155/2017/6572969 pmid: 28630621 |
[26] | Patil G, Do T, Vuong T D, Valliyodan B, Lee J D, Chaudhary J, Shannon J G, Nguyen H T . Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci Rep, 2016, doi: 10.1038/srep19199 |
[27] |
Rasheed A, Wen W, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, He Z H . Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet, 2016,129:1843-1860
doi: 10.1007/s00122-016-2743-x |
[28] |
Pham A T, Mcnally K, Abdel H H, Roger B H, Li Z . Fine mapping and identification of candidate genes controlling the resistance to southern root-knot nematode in PI 96354. Theor Appl Genet, 2013,126:1825-1838
doi: 10.1007/s00122-013-2095-8 |
[29] |
Ma Y S, Wang W H, Wang L X, Ma F M, Wang P W, Chang R Z, Qiu L J . Genetic diversity of soybean and the establishment of a core collection focused on resistance to soybean cyst nematode. J Integr Plant Biol, 2006,48:722-731
doi: 10.1111/jipb.2006.48.issue-6 |
[30] | Golden A M, Et A L . Terminology and identity of infraspecific forms of the soybean cyst nematode (Heterodera glyecines ). Plant Dis Rep, 1970,54:544-546 |
[31] | Schmitt D P, Shannon G . Differentiating soybean responses to Heterodera glycines races. Crop Sci, 1992,32:275-277 |
[32] | Nair S K, Babu R, Magorokosho C, Mahuku G, Semagn K, Beyene Y, Das B, Makumbi D, Kumar P L, Olsen M . Fine mapping of Msv1, a major QTL for resistance to Maize Streak Virus leads to development of production markers for breeding pipelines. Theor Appl Genet, 2015,128:1839-1854 |
[33] | Liu Z Y, Zhu C S, Jiang Y, Tian Y L, Yu J, An H Z, Tang W J, Sun J, Tang J P, Chen G M, Zhai H Q, Wang C M, Wan J M . Association mapping and genetic dissection of nitrogen use efficiency-related traits in rice (Oryza sativa L.). Funct Integr Genomics, 2016,16:323-333 |
[34] | Concibido V C, Denny R L, Boutin S R, Hautea R, Orf J H, Young N D . DNA marker analysis of loci underlying resistance to soybean cyst nematode (Heterodera glycines Ichinohe).Crop Sci, 1994,34:240-246 |
[35] |
袁翠平, 卢为国, 刘章雄, 李英慧, 李卫东, 关荣霞, 常汝镇, 邱丽娟 . 大豆抗胞囊线虫4号生理小种新品系SSR标记分析. 作物学报, 2008,34:1858-1864
doi: 10.3724/SP.J.1006.2008.01858 |
Yuan C P, Lu W G, Liu Z X, Li Y H, Li W D, Guan R X, Chang R Z, Qiu L J . SSR analysis of new developed soybean lines resistant to soybean cyst nematode ( Heterodera glycines Ichinohe) race 4. Acta Agron Sin, 2008,34:1858-1864 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.01858 |
|
[36] |
王文辉, 邱丽娟, 常汝镇, 马凤鸣, 谢华, 林凡云 . 中国大豆种质抗SCN基因rhg1位点SSR标记等位变异特点分析. 大豆科学, 2003,22:246-250
doi: 10.3969/j.issn.1000-9841.2003.04.002 |
Wang W H, Qiu L J, Chang R Z, Ma F M, Xie H, Lin F Y . Characteristics of alleles at Satt309 locus associated with rhg1 gene resistant to SCN of Chinese soybean germplasm. Soybean Sci, 2003,22:246-250 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-9841.2003.04.002 |
|
[37] |
Chen Y, Wang D, Arelli P, Ebrahimi M, Nelson R L . Molecular marker diversity of SCN-resistant sources in soybean. Genome, 2006,49:938-949
doi: 10.1139/g06-057 pmid: 17036069 |
[38] |
Kim M, Hyten D L, Niblack T L, Diers B W . Stacking resistance alleles from wild and domestic soybean sources improves soybean cyst nematode resistance. Crop Sci, 2011,51:934-943
doi: 10.2135/cropsci2010.08.0459 |
[39] |
Matsye P D, Lawrence G W, Youssef R M, Kim K H, Lawrence K S, Matthews B F, Klink V P . The expression of a naturally occurring, truncated allele of an α-SNAP gene suppresses plant parasitic nematode infection. Plant Mol Biol, 2012,80:131-155
doi: 10.1007/s11103-012-9932-z |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[3] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[4] | 姜朋, 张旭, 吴磊, 何漪, 张平平, 马鸿翔, 孔令让. 宁麦9号/扬麦158重组自交系群体产量性状的遗传解析[J]. 作物学报, 2021, 47(5): 869-881. |
[5] | 练云, 王金社, 魏荷, 李金英, 弓贵明, 王树峰, 张晶鹏, 李茂林, 郭建秋, 卢为国. 山西省古交市大豆胞囊线虫新小种X12分布调查[J]. 作物学报, 2021, 47(2): 237-244. |
[6] | 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1和Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090. |
[7] | 姜朋,何漪,张旭,吴磊,张平平,马鸿翔. 宁麦9号与扬麦158株高及其构成因素的遗传解析[J]. 作物学报, 2020, 46(6): 858-868. |
[8] | 胡茂龙, 程丽, 郭月, 龙卫华, 高建芹, 浦惠明, 张洁夫, 陈松. 油菜抗咪唑啉酮类除草剂基因标记的开发与应用[J]. 作物学报, 2020, 46(10): 1639-1646. |
[9] | 陆海燕,周玲,林峰,王蕊,王凤格,赵涵. 基于高通量测序开发玉米高效KASP分子标记[J]. 作物学报, 2019, 45(6): 872-878. |
[10] | 张平,姜一梅,曹鹏辉,张福鳞,伍洪铭,蔡梦颖,刘世家,田云录,江玲,万建民. 通过分子标记辅助选择将耐储藏主效QTL qSS-9 Kas转入宁粳4号提高其种子贮藏能力[J]. 作物学报, 2019, 45(3): 335-343. |
[11] | 杨勇,陆彦,郭淑青,石仲慧,赵杰,范晓磊,李钱峰,刘巧泉,张昌泉. 籼稻背景下导入Wx in等位基因改良稻米食味和理化品质[J]. 作物学报, 2019, 45(11): 1628-1637. |
[12] | 张安宁,刘毅,王飞名,谢岳文,孔德艳,聂元元,张分云,毕俊国,余新桥,刘国兰,罗利军. 节水抗旱稻恢复系的抗褐飞虱分子标记辅助选育及抗性评价[J]. 作物学报, 2019, 45(11): 1764-1769. |
[13] | 朱展望, 徐登安, 程顺和, 高春保, 夏先春, 郝元峰, 何中虎. 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源[J]. 作物学报, 2018, 44(04): 473-482. |
[14] | 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性[J]. 作物学报, 2018, 44(04): 505-511. |
[15] | 姚姝,陈涛,张亚东,朱镇,赵庆勇,周丽慧,赵凌,赵春芳,王才林. 利用分子标记辅助选择聚合水稻Pi-ta、Pi-b和Wx-mq基因[J]. 作物学报, 2017, 43(11): 1622-1631. |
|